. Earth Science News .
FSU Chemist's Ultrathin Films Promise A Multitude Of Uses

Ultrathin film water soluble charged polymers.
Tallahassee FL (SPX) Sep 08, 2005
Imagine a special coating that can be applied to any of a number of surfaces. With its application, carpets, furniture and clothing become super-resistant to stains; automobile bodies are impermeable to water and rust; stents put in place during heart surgery no longer are susceptible to tissue growth that can restrict blood flow; and cell cultures are more easily produced in the laboratory.

These are just a few of the possibilities envisioned by a Florida State University researcher who is developing processes for applying such coatings.

Joseph B. Schlenoff, a professor in FSU's department of chemistry and biochemistry and associate director of its Center for Materials Research and Technology (MARTECH), has worked for more than eight years to develop ultrathin films that repel water and other corrosive substances.

"When you wax your car, water tends to bead up on the surface in small droplets," Schlenoff said. "But when one of these films is applied, water virtually flies off. That's because the films are 'superhydrophobic,' and water droplets ride over them."

The key to creating such films lies in a layering process that Schlenoff has patented.

"Essentially, we place layers of positively and negatively charged electrolytes atop one another," he said. "Their electrical charges cancel each other out, creating a neutrally charged, ultrathin film. The protective seal that is created by such films is much more effective than paints or resins alone at repelling corrosive substances, such as salt or water."

Naresh Dalal, chairman of FSU's department of chemistry and biochemistry, said that other researchers have created methods for producing multilayer films, but that Schlenoff's process is particularly simple -- and relatively inexpensive to reproduce. "The potential applications for this technology are staggering," he said.

Consider these possibilities:

Car bodies, building materials, boat hulls or other items that are likely to degrade when exposed to the elements could be treated with ultrathin films during the manufacturing process to make them resistant to rust, corrosion or water damage.

Stains on clothing, carpeting and other fabrics could be a thing of the past if films are applied.

Stents used for implantation inside coronary arteries during surgical procedures could be coated with an ultrathin film that prevents cells and proteins from adhering, thus avoiding a narrowing of the arteries and restriction of blood flow.

Contact lenses could be treated to prevent proteins and calcium deposits from binding to them during wear.

High-speed electronics could be coated with ultrathin films to make them resistant to electrostatic fields that interfere with their functions.

Glass slides can be stamped with films that encourage or retard cellular adhesion in certain areas, allowing for greater efficiency in producing certain cell cultures used in biomedical research.

Already, one of Schlenoff's patents has entered the marketplace. Recently, Schlenoff and another FSU researcher, Stephen Dubas, designed a small robot that can dip glass slides into beakers to coat the slides with an ultrathin film. Copies of the robot are selling all over the world for more than $10,000 apiece.

All told, Schlenoff holds six issued U.S. patents, with several pending, related to ultrathin films, placing him second among FSU faculty behind fellow chemistry Professor Robert Holton, whose discovery of a synthetic form of the cancer-fighting drug Taxol earned the university $67 million a year at the peak of its popularity.

"It's exciting to be involved in an emerging technology that has potential for helping people in so many ways," Schlenoff said. "If it benefits FSU financially, all the better."

Related Links
MARTECH
Florida State University
TerraDaily
Search TerraDaily
Subscribe To TerraDaily Express

Sandia Conducts Tests At Solar Tower To Benefit Future Space Exploration
Albuquerque NM (SPX) Sep 08, 2005
For the last two years, tests have been conducted at Sandia National Laboratories' National Solar Thermal Test Facility to see how materials used for NASA's future planetary exploration missions can withstand severe radiant heating.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.