Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
A 'B12 shot' for marine algae
by Staff Writers
Woods Hole MA (SPX) Jun 08, 2012


Via photosynthesis, marine algae draw huge amounts of carbon dioxide, a greenhouse gas, from the air, incorporating carbon into their bodies. The algae provide food that sets the food chain in motion. When they die or are eaten, some of the carbon ends up sinking to the ocean depths, where it cannot re-enter the atmosphere.

Scientists have revealed a key cog in the biochemical machinery that allows marine algae at the base of the oceanic food chain to thrive. They have discovered a previously unknown protein in algae that grabs an essential but scarce nutrient out of seawater, vitamin B12.

Many algae, as well as land-dwelling animals, including humans, require B12, but they cannot make it and must either acquire it from the environment or eat food that contains B12. Only certain single-celled bacteria and archaea have the ability to synthesize B12, which is also known as cobalamin.

Studying algal cultures and seawater samples from the Southern Ocean off Antarctica, a team of researchers from Woods Hole Oceanographic Institution (WHOI) and the J. Craig Venter Institute found a protein they described as "the B12 claw."

Stationed at the algae's cell walls, the protein appears to operate by binding B12 in the ocean and helping to bring it into the cell. When B12 supplies are scarce, algae compensate by producing more of the protein, officially known as cobalamin acquisition protein 1, or CBA1. The team reported their findings May 31 in Proceedings of the National Academy of Sciences.

Discovery of CBA1 illuminates a small but vital piece of the fundamental metabolic machinery that allows the growth of marine algae, which have critical impacts on the marine food web and on Earth's climate.

Via photosynthesis, marine algae draw huge amounts of carbon dioxide, a greenhouse gas, from the air, incorporating carbon into their bodies. The algae provide food that sets the food chain in motion. When they die or are eaten, some of the carbon ends up sinking to the ocean depths, where it cannot re-enter the atmosphere.

The discovery also opens the door for industrial or therapeutic applications. Since CBA1 is essential for marine algae growth, it could provide clues to how to promote growth of algae used to manufacture biofuels. Learning to manipulate the B12 biochemical pathways of beneficial or detrimental microbes could eventually lead to antibiotic or antifungal medicines.

To discover CBA1, Erin Bertrand, a graduate student in the MIT/WHOI Joint Program in Oceanography, and her advisor, WHOI biogeochemist Mak Saito used an approach now common in biomedical research but only recently applied to marine science: proteomics, the study of the proteins organisms make to function in their environment and respond to changing conditions.

Among thousands of other proteins present in the algae, they identified the novel CBA1 protein when it increased in abundance when the algae were starved of vitamin B12. They then worked with colleagues at the Venter Institute to demonstrate CBA1's function and its presence in the oceans.

Bertrand, the study's lead author, earned a Ph.D. from the MIT/WHOI Joint Program in Oceanography in September 2011 and is now a postdoctoral scientist at the Venter Institute. In addition to Saito, co-authors of the papers are Andrew Allen, Christopher Dupont, Trina Norden-Krichmar, Jing Bai and Ruben Valas of the Venter Institute. The research was funded by the National Science Foundation and the Gordon and Betty Moore Foundation's Marine Microbial Initiative program.

.


Related Links
Woods Hole Oceanographic Institution
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Grazing snails rule the waves
Sydney, Australia (SPX) Jun 07, 2012
Coral reefs and seashores largely look the way they do because large fish and urchins eat most of the seaweed that might otherwise cover them, but a major new study has found that the greatest impact of all comes from an unexpected quarter - small marine snails. The study published in the journal Ecology Letters is the largest of its kind ever undertaken into the ecological impacts of mari ... read more


WATER WORLD
Japan agency sorry for comparing radiation to wife

Lithuania launches regional nuclear safety watchdog

Italy's quake-struck north tries to reassure tourists

Ferrari auction to raise money for Italy quake

WATER WORLD
Smooth moves: how space animates Hollywood

Skeleton key

Apple courts developers vital to its popularity

Phones, tablets transform handheld game market

WATER WORLD
A 'B12 shot' for marine algae

Kenya's fragile Lake Turkana threatened by Ethiopian dam

Practical Tool Can 'Take Pulse' Of Blue-Green Algae Status In Lakes

Grazing snails rule the waves

WATER WORLD
Secure, sustainable funding for Indigenous participation in Arctic Council a key priority

Expedition studies acid impacts on Arctic

Huge algae blooms discovered beneath Arctic ice

Peru needs glacier loss monitoring: dire UN warning

WATER WORLD
Latest genomic studies shed new light on maize diversity and evolution

OU scientists and international team deciper the genetic code of the tomato

Blowing in the wind: How hidden flower features are crucial for bees

Reduced tillage doesn't mean reduced cotton yields under drip irrigation

WATER WORLD
US strips seaweed from Japanese tsunami wreck

Like a jet through solid rock volcanic arc fed by rapid fluid pulses

Super-eruptions may have surprisingly short fuses

Huge dock washed up on US coast, thought from Japan

WATER WORLD
Carbon traders eye Mozambican stoves

LRA rebels attack DR Congo wildlife park guards

Conflicts hinder Niger, Mali locust control: UN food agency

Somali soldiers train for urban combat in rural Uganda

WATER WORLD
Fossil discovery sheds new light on evolutionary history of higher primates

Monkey lip smacks provide new insights into the evolution of human speech

Stanford psychologists aim to help computers understand you better

New Mini-sensor Measures Magnetic Field of the Brain




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement