Subscribe free to our newsletters via your
. Earth Science News .




EPIDEMICS
A universal Ebola drug target
by Staff Writers
Salt Lake City UT (SPX) Oct 10, 2014


Ebola is a lethal virus that causes severe hemorrhagic fever with a 50 percent to 90 percent mortality rate. There are five known species of the virus. Outbreaks have been occurring with increasing frequency in recent years, and an unprecedented and rapidly expanding Ebola outbreak is currently spreading through several countries in West Africa with devastating consequences.

University of Utah biochemists have reported a new drug discovery tool against the Ebola virus. According to a study published in this week's online edition of Protein Science, they have produced a molecule, known as a peptide mimic, that displays a functionally critical region of the virus that is universally conserved in all known species of Ebola.

This new tool can be used as a drug target in the discovery of anti-Ebola agents that are effective against all known strains and likely future strains.

The University of Utah (U of U) work, which was funded by the National Institutes of Health, was conducted by a large collaborative team led by Debra Eckert, Ph.D., (research assistant professor of biochemistry) and Michael Kay, M.D., Ph.D., (professor of biochemistry).

Key contributions to this work were provided by Dr. John Dye's laboratory at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the lab of Christopher P. Hill, D.Phil., professor and co-chair of the U of U Department of Biochemistry, and a group led by Brett Welch, Ph.D. at Navigen, Inc., a Salt Lake City pharmaceutical discovery and development company. (Navigen has licensed exclusive rights to the technology from the U of U and is currently screening for drugs against the target.)

The Utah scientists designed peptide mimics of a highly conserved region in the Ebola protein that controls entry of the virus into the human host cell, initiating infection. Importantly, the researchers were able to demonstrate this peptide target is suitable for use in high-throughput drug screens. These kinds of screens allow rapid identification of potential new drugs from billions of possible candidates.

Current experimental drugs generally target only one of Ebola's five species. "The current growing epidemic demonstrates the need for effective broad-range Ebola virus therapies," says Dr. Tracy R. Clinton, lead author on the study.

"Importantly, viral sequence information from the epidemic reveals rapid changes in the viral genome, while our target sequence remains the same. Therefore, our target will enable the discovery of drugs with the potential to treat any future epidemic, even if new Ebola virus strains emerge."

Ebola is a lethal virus that causes severe hemorrhagic fever with a 50 percent to 90 percent mortality rate. There are five known species of the virus. Outbreaks have been occurring with increasing frequency in recent years, and an unprecedented and rapidly expanding Ebola outbreak is currently spreading through several countries in West Africa with devastating consequences.

The development of an effective anti-Ebola agent to protect against natural outbreaks and potential bioterror exposures is an urgent global health need. There are no approved anti-Ebola agents, but a number of promising experimental drugs are being aggressively advanced to clinical trials to address the current crisis.

Dr. Eckert notes, "Although the current push of clinical trials will hopefully lead to an effective treatment for the Zaire species causing the present epidemic, the same treatments are unlikely to be effective against future outbreaks of a different or new Ebola species. Development of a broadly acting therapy is an important long-term goal that would allow cost-effective stockpiling of a universal Ebola treatment."

Of particular interest, this target was shown to be suitable for the discovery of mirror-image peptide inhibitors (D-peptides), which are promising drug candidates. Unlike natural peptides, they are not digested by enzymes in the blood. D-peptides are also much simpler and less expensive to produce compared to the current most promising approach, antibodies.

The Utah group has previously developed highly potent and broadly acting D-peptide inhibitors of HIV entry, currently in preclinical studies, and is now adapting this approach to Ebola using the mimics developed in this study. In collaboration with Navigen, several promising lead D-peptide inhibitors have already been identified. U of U and Navigen are now seeking additional funding to optimize these inhibitors and advance them into clinical trials in humans.

.


Related Links
University of Utah Health Sciences
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EPIDEMICS
EU well armed to prevent an Ebola epidemic: experts
Brussels (AFP) Oct 09, 2014
The European Union must fill gaps to stop the spread of Ebola now that an infected nurse in Spain has exposed these failings, but it is well armed to prevent an epidemic, EU officials and experts said. Taking into account the level of health and medical standards in Europe, "the situation cannot be compared to what is happening in Africa," said the spokesman for the European health commissio ... read more


EPIDEMICS
Woman survives 17 days lost in Australian rainforest

Australia shifts MH370 search zone further south

In Nobel season, laureates fret for sickly Earth

Pakistan bars relief goods to flood-hit Indian Kashmir

EPIDEMICS
3D printer makes bionic hand for 5-year-old girl

Fed Up With Federal Inaction, States Act Alone on Cap-and-Trade

Czechs preparing international tender for air defense radar

How to make stronger, 'greener' cement

EPIDEMICS
How plankton gets jet lagged

Asian carp DNA detected in Lake Michigan tributary

Coral Reef Winners and Losers

New map uncovers thousands of unseen seamounts on ocean floor

EPIDEMICS
Changing Antarctic waters could trigger steep rise in sea levels

Plumbing system beneath Greenland slows ice sheet as summer progresses

Flight ban to protect baby walruses beached in Alaska

New mechanism reveals how molecules become trapped in ice

EPIDEMICS
NMSU researchers address water sustainability for viable farming

Malaysia's Sime Darby to acquire PNG palm oil leader

China food giant buys into Italian olive oil maker

The Shebaa Farms, a tug-of-war Mideast conflict zone

EPIDEMICS
China earthquake leaves 300 injured, one dead

Parts of Easter Island evacuated after Chile quake

Supertyphoon rivalling Haiyan on course for Japan

Strong 6.0-magnitude quake hits China's Yunnan province

EPIDEMICS
Dhlakama: Mozambique's comeback kid rides election wave

Obama maintains child soldier sanctions against Myanmar

C.Africa president calls for lifting UN arms embargo

Whistleblower phone app seeks to outsmart corruption

EPIDEMICS
How to be Emirati in a sea of foreign influence

World's oldest rock art found in Indonesian cave

Protected caves in Oregon change ideas of early Americans

Scientists are closer to understanding human height




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.