Subscribe free to our newsletters via your
. Earth Science News .




TECH SPACE
An engineered surface unsticks sticky water droplets
by Staff Writers
University Park PA (SPX) Sep 02, 2015


In conventional superhydrophobic rough surfaces, tiny liquid droplets in the Wenzel state will remain pinned to the surface textures. In contrast, the new slippery rough surface enables high mobility for Wenzel droplets. Image courtesy Xianming Dai and Tak-Sing Wong, Penn State. For a larger version of this image please go here.

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient water harvesting in arid regions, and prevent icing and frosting on aircraft wings. "This represents a fundamentally new concept in engineered surfaces," said Tak-Sing Wong, assistant professor of mechanical engineering and a faculty member in the Penn State Materials Research Institute.

"Our surfaces combine the unique surface architectures of lotus leaves and pitcher plants in such a way that these surfaces possess both high surface area and a slippery interface to enhance droplet collection and mobility. Mobility of liquid droplets on rough surfaces is highly dependent on how the liquid wets the surface. We have demonstrated for the first time experimentally that liquid droplets can be highly mobile when in the Wenzel state."

Liquid droplets on rough surfaces come in one of two states: Cassie, in which the liquid partially floats on a layer of air or gas, and Wenzel, in which the droplets are in full contact with the surface, trapping or pinning them. The two states are named for the physicists who first described them. While the Wenzel equation was published in 1936 in a highly cited paper, it has been extremely challenging to verify the equation experimentally.

"Through careful, systematic analysis, we found that the Wenzel equation does not apply for highly wetting liquids," said Birgitt Boschitsch Stogin, graduate student in Wong's group and coauthor of "Slippery Wenzel State," published in the online edition of ACS Nano.

"Droplets on conventional rough surfaces are mobile in the Cassie state and pinned in the Wenzel state. The sticky Wenzel state results in many problems in condensation heat transfer, water harvesting and ice removal. Our idea is to solve these problems by enabling Wenzel state droplets to be mobile," said Xianming Dai, postdoctoral scholar in Wong's group and the lead author on the paper.

In the last decade, tremendous efforts have been devoted to designing rough surfaces that prevent the Cassie-to-Wenzel wetting transition. A key conceptual advance in the current study is that both Cassie- and Wenzel-state droplets can retain mobility on the slippery rough surface, foregoing the difficult process of preventing the wetting transition.

In order to make Wenzel state droplets mobile, the researchers etched micrometer scale pillars into a silicon surface using photolithography and deep reactive-ion etching, and then created nanoscale textures on the pillars by wet etching. They then infused the nanotextures with a layer of lubricant that completely coated the nanostructures, resulting in greatly reduced pinning of the droplets. The nanostructures also greatly enhanced lubricant retention compared to the microstructured surface alone.

The same design principle can be easily extended to other materials beyond silicon, such as metals, glass, ceramics and plastics. The authors believe this work will open the search for a new, unified model of wetting physics that explains wetting phenomena on rough surfaces.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Combined disciplines, computational programs determine atomic structure
Chicago IL (SPX) Aug 27, 2015
A team from the University of Illinois at Urbana-Champaign and Indiana University combined two techniques to determine the structure of cyanostar, a new abiological molecule that captures unwanted negative ions in solutions. When Semin Lee, a chemist and Beckman Institute postdoctoral fellow at Illinois, first created cyanostar at Indiana University, he knew the chemical properties, but co ... read more


TECH SPACE
Japan lifts evacuation order for radiation-hit Fukushima town

Britain 'to take 15,000 Syrian refugees': report

EU's Mogherini sees military action against migrant smugglers within weeks

Will talk of the 'Big One' shake the US into quake prep?

TECH SPACE
Paper tubes make stiff origami structures

Long-sought chiral anomaly detected in crystalline material

Metallic gels produce tunable light emission

An engineered surface unsticks sticky water droplets

TECH SPACE
A technique designed to predict how much energy waves will be bringing

Could tiny jellyfish propulsion drive design of new underwater craft

Understanding the deep sea is key to a sustainable blue economy

VIMS reports intense and widespread algal blooms

TECH SPACE
Hot summer fuels dangerous glacier melting in Central Asia

NASA to Study Arctic Climate Change Ecosystem Impacts

Adapt or die: Arctic animals cope with climate change

Tallest mountain in North America renamed: White House

TECH SPACE
Saving oysters by digging up their past

New peer-reviewed study rewrites genetic history of sheep

New fungi behind emerging wheat disease

Repurposing would-be wasted food to feed the hungry and create jobs

TECH SPACE
Seven fishermen killed by Hurricane Fred: maritime officials

What would a tsunami in the Mediterranean look like

Dominica pleads for help as storm death toll tops 30

West African archipelago hit in rare hurricane strike

TECH SPACE
Algeria power struggle intensifies with arrest, sackings

Nigeria reinstates 3,000 soldiers dismissed over Boko Haram war

China's Xi calls indicted Sudanese leader Bashir 'old friend'

Africa uneasy as China turmoil threatens investment boom

TECH SPACE
US Catholics mostly accepting of non-traditional families

Penn and German researchers help identify neural basis of multitasking

Philistines introduced sycamore, cumin and opium poppy into Israel

Hypoallergenic parks: Coming soon?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.