Subscribe free to our newsletters via your
. Earth Science News .




EARLY EARTH
Ancient insects shed light on biodiversity
by Staff Writers
Burnaby, Canada (SPX) Feb 14, 2013


Tiny fossil fly from an ancient mountain valley in British Columbia.

Simon Fraser University evolutionary biologists Bruce Archibald and Rolf Mathewes, and Brandon University biologist David Greenwood, have discovered that modern tropical mountains' diversity patterns extended up into Canada about 50 million years ago.

Their findings confirm an influential theory about change in modern species diversity across mountains, and provide evidence that global biodiversity was greater in ancient times than now. The scientific journal Palaeogeography, Palaeoclimatology, Palaeoecology has published their research.

About 45 years ago, an evolutionary biologist at the University of Pennsylvania theorized that change in species from site to site across mountain ranges in the tropics should be greater than in temperate latitudes.

Daniel Janzen reasoned that the great difference between summer and winter in temperate latitudes (high seasonality) offers a wide window to migrate across mountainous regions. The small difference in the tropics (low seasonality) allows a very narrow opportunity, annually. Consequently, communities across tropical mountains should have fewer of the same species. Many studies examining modern communities support this theory.

Archibald, Mathewes and Greenwood realized that fossil beds across a thousand kilometres of the ancient mountains of British Columbia and Washington provided a unique lens through which to deepen evaluation of this theory.

Fifty million years ago, when these fossil beds were laid down, the world had low seasonality outside of the tropics, right to the poles. Because of this, if Janzen's theory is right, the pattern of biodiversity that he described in modern tropical mountains should have extended well into higher latitudes.

"We found that insect species changed greatly across British Columbia's and Washington State's ancient mountain ranges, like in the modern tropics," Archibald says, "exactly as Janzen's seasonality hypothesis predicted.

This implies that it's the particular seasonality now found in the modern tropics, not where that climate is situated globally, that affects this biodiversity pattern." He adds: "Sometimes it helps to look to the ancient past to better understand how things work today."

The findings also bolster the idea that ancient Earth was a much more diverse world than now with many more species.

.


Related Links
Simon Fraser University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Largest-ever study of mammalian ancestry completed by renowned research te
Pittsburgh PA (SPX) Feb 11, 2013
A groundbreaking six-year research collaboration has produced the most complete picture yet of the evolution of placental mammals, the group that includes humans. Placental mammals are the largest branch of the mammalian family tree, with more than 5,100 living species. Researchers from Carnegie Museum of Natural History are among the team of 23 that took part in this extensive interdiscip ... read more


EARLY EARTH
Aid trickles into tsunami-hit Solomons despite aftershocks

Smartphones, tablets help UW researchers improve storm forecasts

Rescuers struggle to aid Solomons quake victims

HDT Global Awarded Guardian Angel Air-Deployable Rescue Vehicle Contract

EARLY EARTH
Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

3D Printing on the Micrometer Scale

Nextdoor renovates before taking on the world

EARLY EARTH
New Zealand dolphin faces extinction, group warns

Nothing fishy about swimming with same-sized mates

Large water loss detected in Mideast river basins: study

Balancing Biodiversity And Development In Small Fishing Communities

EARLY EARTH
Sunlight stimulates release of carbon dioxide from permafrost

Volcano location could be greenhouse-icehouse key

Features Of Southeast European Human Ancestors Influenced By Lack Of Episodic Glaciations

Polar bear researchers urge governments to act now and save the species

EARLY EARTH
X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

Nitrogen from pollution, natural sources causes growth of toxic algae

Pioneering Finns share leftovers to cut waste

EARLY EARTH
Shimmering water reveals cold volcanic vent in Antarctic waters

Cargo container research to improve buildings' ability to withstand tsunamis

Powerful aftershocks rattle Solomon Islands

Hoodoos - key to earthquakes?

EARLY EARTH
Jane Goodall: chimp scientist turned activist

Plane carrying Guinea army delegation crashes in Liberia

Ghana extradites ex-military chief to I. Coast: security

Sudan president in Eritrea after Asmara mutiny: reports

EARLY EARTH
UF researchers include humans in most comprehensive tree of life to date

The last Neanderthals of southern Iberia did not coexist with modern humans

Computer helping save lost languages

Archaic Native Americans built massive Louisiana mound in less than 90 days




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement