|
. | . |
|
by Staff Writers Vancouver, Canada (SPX) Jul 21, 2015
Marine species that already have large ranges are extending their territories fastest in response to climate change, according to new research from University of British Columbia biodiversity experts. The study is one of the first comprehensive looks at how traits--other than thermal niche--impact marine animals' ability to respond to climate change. It could help improve global predictions of how different species redistribute as the oceans warm, and identify species in greatest jeopardy. "We have a bit of a mystery as to why some animals are moving quickly into cooler waters, like the green sea urchin that is decimating kelp forests in Tasmania, while other species aren't moving at all," says UBC biodiversity researcher Jennifer Sunday, lead author of the study. "Our findings indicate that animals which already have wide-latitudinal ranges, habitat generalists, and species with high adult mobility displayed the quickest and greatest range shifts. The flip side is that small-ranging species are in increased jeopardy as our planet's oceans continue to warm." The researchers used a global marine hotspot, the fast-warming waters off Australia's east coast, as their lab. In Eastern Australia, the ocean has been warming four times faster than the global average--and many marine species have been appearing further south than ever before. By factoring in species traits--along with predictions based on the warming pattern in the region--the researchers were able to more than double their ability to account for variation in range extensions. The yellowtail kingfish, tiger shark, short-tail stingray and the Maori wrasse were some of the fish species with the largest range shifts in the region. Filter-feeding barnacles--omnivores that are notoriously invasive--also displayed some of the largest expansions of territory. Meanwhile the spotted handfish, a coastal species in the same region, hasn't extended its distributional range into cooler waters despite shifting temperatures. The study was published in Ecology Letters.
Related Links University of British Columbia Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |