. | . |
Bacteria in branches naturally fertilize trees by Staff Writers Seattle WA (SPX) May 25, 2016
The bacteria in and on our bodies have been shown to be vital for human health, influencing nutrition, obesity and protection from diseases. But science has only recently delved into the importance of the microbiome of plants. Since plants can't move, they are especially reliant on partnerships with microbes to help them get nutrients. Now, University of Washington plant microbiologist Sharon Doty, along with her team of undergraduate and graduate students and staff, has demonstrated that poplar trees growing in rocky, inhospitable terrain harbor bacteria within them that could provide valuable nutrients to help the plant grow. Their findings, which could have implications for agriculture crop and bioenergy crop productivity, were published May 19 in the journal PLOS ONE. The researchers found that microbial communities are highly diverse, varying dramatically even in cuttings next to each other. "This variability made it especially difficult to quantify the activity, but is the key to the biology since it is probably only specific groupings of microorganisms that are working together to provide this nutrient to the host," said Doty, a professor in the UW School of Environmental and Forest Sciences. Nitrogen fixation is a natural process that is essential to sustain all forms of life. In naturally occurring low-nutrient environments such as rocky, barren terrain, plants associate with nitrogen-fixing bacteria to acquire this essential nutrient. It's well documented that nitrogen fixation happens in bacteria-rich nodules on the roots of legumes such as soybeans, clovers, alfalfa and lupines. Bacteria help the roots fix atmospheric nitrogen gas into a form which can be used by the plant. There is a strongly held belief that only plants with root nodules can benefit from this type of symbiosis. This research provides the first direct evidence that nitrogen fixation can occur in the branches of trees, with no root nodule required. This could have significant implications for common agricultural crop plants. The microbes the team has isolated from wild poplar and willow plants help corn, tomatoes and peppers, as well as turf grasses and forest trees to grow with less fertilizer. Fertilizers are synthesized using fossil fuels, so costs can fluctuate wildly. Because fertilizers are used for growing everything from agricultural and bioenergy crops and trees for lumber to the grass in golf courses, this volatile pricing and uncertain availability affects everyone. "Having access to the key microbial strains that help wild plants thrive on just rocks and sand will be crucial for moving agriculture, bioenergy and forestry away from a dependence on chemical fertilizers and towards a more natural way of boosting plant productivity," Doty said. Other co-authors of the study are Andrew Sher, Neil Fleck, Mahsa Khorasani, Zareen Khan, Andrew W. K. Ko, Soo-Hyung Kim and Thomas DeLuca of the UW's School of Environmental and Forest Sciences; and Roger Bumgarner of the UW's Department of Microbiology.
Related Links University of Washington Forestry News - Global and Local News, Science and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |