|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Aarhus, Denmark (SPX) Aug 19, 2015
All living things need phosphate to grow, which is why several hundred million tons of phosphate fertilisers are used every year in agriculture throughout the world. The nutrient content is so low in many parts of the world's oceans that all growth comes to a halt, and bacteria have therefore developed advanced mechanisms to extract phosphate from other substances. These are known as phosphonate compounds, which are produced by many primitive organisms and account for the largest known stock of phosphorus in the marine environment (see figure). Many of these compounds are formed as toxins (antibiotics) as part of the ongoing battle for survival among marine organisms. Several million kilograms of glyphosate (Roundup) are used as pesticide in agriculture every year, and the accumulation of residues of this phosphonate compound in groundwater has led to growing concern in recent years. Bacteria capable of converting phosphonate compounds into phosphate to boost their growth have developed an arsenal of fourteen proteins for this purpose, approximately half of which are enzymes required for the chemical transformation of the substances. Five of these enzymes accumulate in the cells in a large complex called the C-P lyase complex, which can catalyse two of the total of five reactions required to use the phosphonate compound for growth. An international team consisting of researchers from both the Department of Molecular Biology and Genetics, Aarhus University, and the Medical Research Council (MRC) in Cambridge, UK, have now determined the precise molecular structure of the C-P lyase complex, making it possible for the first time to understand how the secret weapon used by bacteria actually works. Using X-ray crystallography and electron microscopy, the researchers were able to achieve extremely detailed insight into the structure of four of the enzymes, as well as the location of the fifth enzyme in the complex. The results have just been published in the highly esteemed scientific journal Nature and they are expected to revolutionise our understanding of the way bacteria can survive under harsh natural conditions, as well as their ability to break down certain antibiotics. In the long term, the results could potentially be used to develop techniques for removing pesticide residues from drinking water, to avoid bacterial resistance to antibiotics, and to understand how the greenhouse effect is caused, as a significant amount of methane emission is due to bacterial conversion of methyl phosphonate in the world's oceans. Structural insights into the bacterial carbon-phosphorus lyase machinery, Paulina Seweryn, Lan Bich Van, Morten Kjeldgaard, Christopher J. Russo, Lori A. Passmore, Bjarne Hove-Jensen, Bjarne Jochimsen and Ditlev E. Brodersen
Related Links Aarhus University Darwin Today At TerraDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |