. | . |
Chemical engineers have figured out how to make vaccines faster by Staff Writers Provo UT (SPX) Nov 25, 2015
Researchers at Brigham Young University have devised a system to speed up the process of making life-saving vaccines for new viruses. Their concept is to create the biological machinery for vaccine production en masse, put it in a freeze-dried state and stockpile it around the country. Then, when a new virus hits, labs can simply add water to a 'kit' to rapidly produce vaccines. "You could just pull it off the shelf and make it," said senior author Brad Bundy, associate professor of chemical engineering. "We could make the vaccine and be ready for distribution in a day." The research, published in Biotechnology Journal, demonstrates the ability to store the drug and vaccine-making machinery for more than a year. Traditional systems to produce vaccines for pandemic influenza strains require heavy engineering and specialized equipment that only a few labs across the country have on hand. These traditional systems are also time-consuming, taking months to execute. Bundy's idea is a new angle on the emerging method of 'cell-free protein synthesis,' a process that combines DNA to make proteins needed for drugs (instead of growing protein in a cell). His lab is creating a system where the majority of the work is done beforehand so vaccine kits can be ready to go and be activated at the drop of a dime. "It will not only provide a quicker response to pandemics, but it will also make protein-based drugs more available to third-world countries where production and refrigerated storage can be problematic," added William Pitt, a study coauthor and fellow BYU professor of chemical engineering. While the team is now testing their version of the cell-free, recombinant DNA process for vaccine production, they've already successfully demonstrated it for at least one anti-cancer protein (onconase). The researchers believe their method can significantly reduce investment of time and money towards future drug production and, in turn, reduce treatment expenses for patients. "The drugs today are changing," Bundy said. "The lifesaving cancer drugs we have now, the drugs for arthritis, the drugs with the greatest impact, are made out of proteins, not small chemical molecules. This method takes full advantage of that to provide a quicker, more personal response."
Related Links Brigham Young University Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |