. Earth Science News .
EPIDEMICS
Chip-based technology enables reliable direct detection of Ebola virus
by Staff Writers
Santa Cruz CA (SPX) Oct 01, 2015


This hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA. Image courtesy Joshua Parks. For a larger version of this image please go here.

A team led by researchers at UC Santa Cruz has developed chip-based technology for reliable detection of Ebola virus and other viral pathogens. The system uses direct optical detection of viral molecules and can be integrated into a simple, portable instrument for use in field situations where rapid, accurate detection of Ebola infections is needed to control outbreaks.

Laboratory tests using preparations of Ebola virus and other hemorrhagic fever viruses showed that the system has the sensitivity and specificity needed to provide a viable clinical assay. The team reported their results in a paper published September 25 in Nature Scientific Reports.

An outbreak of Ebola virus in West Africa has killed more than 11,000 people since 2014, with new cases occurring recently in Guinea and Sierra Leone. The current gold standard for Ebola virus detection relies on a method called polymerase chain reaction (PCR) to amplify the virus's genetic material for detection. Because PCR works on DNA molecules and Ebola is an RNA virus, the reverse transcriptase enzyme is used to make DNA copies of the viral RNA prior to PCR amplification and detection.

"Compared to our system, PCR detection is more complex and requires a laboratory setting," said senior author Holger Schmidt, the Kapany Professor of Optoelectronics at UC Santa Cruz. "We're detecting the nucleic acids directly, and we achieve a comparable limit of detection to PCR and excellent specificity."

In laboratory tests, the system provided sensitive detection of Ebola virus while giving no positive counts in tests with two related viruses, Sudan virus and Marburg virus. Testing with different concentrations of Ebola virus demonstrated accurate quantification of the virus over six orders of magnitude. Adding a "preconcentration" step during sample processing on the microfluidic chip extended the limit of detection well beyond that achieved by other chip-based approaches, covering a range comparable to PCR analysis.

"The measurements were taken at clinical concentrations covering the entire range of what would be seen in an infected person," Schmidt said.

Schmidt's lab at UC Santa Cruz worked with researchers at Brigham Young University and UC Berkeley to develop the system. Virologists at Texas Biomedical Research Institute in San Antonio prepared the viral samples for testing.

The system combines two small chips, a microfluidic chip for sample preparation and an optofluidic chip for optical detection. For over a decade, Schmidt and his collaborators have been developing optofluidic chip technology for optical analysis of single molecules as they pass through a tiny fluid-filled channel on the chip. The microfluidic chip for sample processing can be integrated as a second layer next to or on top of the optofluidic chip.

Schmidt's lab designed and built the microfluidic chip in collaboration with coauthor Richard Mathies at UC Berkeley who pioneered this technology. It is made of a silicon-based polymer, polydimethylsiloxane (PDMS), and has microvalves and fluidic channels to transport the sample between nodes for various sample preparation steps.

The targeted molecules--in this case, Ebola virus RNA--are isolated by binding to a matching sequence of synthetic DNA (called an oligonucleotide) attached to magnetic microbeads. The microbeads are collected with a magnet, nontarget biomolecules are washed off, and the bound targets are then released by heating, labeled with fluorescent markers, and transferred to the optofluidic chip for optical detection.

Schmidt noted that the team has not yet been able to test the system starting with raw blood samples. That will require additional sample preparation steps, and it will also have to be done in a biosafety level 4 facility.

"We are now building a prototype to bring to the Texas facility so that we can start with a blood sample and do a complete front-to-back analysis," Schmidt said. "We are also working to use the same system for detecting less dangerous pathogens and do the complete analysis here at UC Santa Cruz."

The lead authors of the paper are postdoctoral researcher Hong Cai and graduate student Joshua Parks, both in Schmidt's lab at UC Santa Cruz. A team led by Aaron Hawkins at BYU fabricated the silicon-based optofluidic chips. Virologist Jean Patterson led the team at Texas Biomedical Research Institute that prepared viral samples for testing. This research was supported by the W. M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz and grants from the National Institutes of Health and the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Cruz
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EPIDEMICS
New clues on the history of the smallpox vaccine virus
Rio de Janeiro, Brazil (SPX) Sep 23, 2015
Smallpox - simply hearing the word evokes images of countless people suffering gruesome deaths throughout recorded history. Known scientifically as variola, the virus had 30 percent mortality rate and survivors were branded with pox scars for life. For millennia, physicians often did more harm than good. Smallpox victims were bled, poked with golden needles, kept in overheated rooms while febril ... read more


EPIDEMICS
China leader throws support behind UN peacekeeping

Taking greater role, China leader pledges $2 bln to poor

No relief for Nepal quake victims as $4.1bn fund in limbo

Japan commits $1.5bn for Middle East refugees, peace

EPIDEMICS
Latvia orders Sentinel 3-D radars

Benign by design

Pentagon delays JSTARS acquisition

Oculus proclaims dawn of 'virtual reality era'

EPIDEMICS
EU warns Taiwan over illegal fishing or risk ban

Loss of ocean predators has impact on climate change strategies

Scientists solve deep ocean carbon riddle

U.K. experiencing highest tides in more than 18 years

EPIDEMICS
Arctic sea ice still too thick for regular shipping through Northwest

UAF model used to estimate Antarctic ice sheet melting

King crabs threaten Antarctic ecosystem due to warming ocean

NASA to Fly Parallel Science Campaigns at Both Poles

EPIDEMICS
ASU study finds weather extremes harmful to grasslands

The origin and spread of 'Emperor's rice'

Bumblebees' adaptation to climate change could hasten population decline

Chinese court charges 10 mired in OSI meat scandal

EPIDEMICS
Hurricane Joaquin strengthens, now 'extremely dangerous'

Nicaraguan volcano belches gas, ashes and rocks

Thousands evacuated as 'super typhoon' approaches Taiwan

Indonesian quake injures scores, shakes popular tourist spot

EPIDEMICS
Burkina Faso coup leader in police custody: security source

Britain to send troops to Somalia for training

U.K. to send troops to Somalia and South Sudan

Burkina president resumes power after week-long coup

EPIDEMICS
How to find out about the human mind through stone

Targeted Electrical Stimulation of the Brain Shows Promise as a Memory Aid

Scientists report earlier date of shift in human ancestors' diet

Fossil trove adds a new limb to human family tree









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.