. Earth Science News .
Climate Change Will Affect Carbon Sequestration In Oceans, Model Shows

"Through a number of physical and chemical interactive mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences.

Champaign IL (SPX) Sep 08, 2005
An Earth System model developed by researchers at the University of Illinois at Urbana-Champaign indicates that the best location to store carbon dioxide in the deep ocean will change with climate change.

The direct injection of carbon dioxide deep into the ocean has been suggested as one method to help control rising carbon dioxide levels in the atmosphere and mitigate the effects of global warming. But, because the atmosphere interacts with the oceans, the net uptake of carbon dioxide and the oceans' sequestration capacity could be affected by climate change.

"Through a number of physical and chemical interactive mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences. "Where the carbon dioxide is injected turns out to be a very important issue."

Developed by Jain and graduate student Long Cao, the Integrated Science Assessment Model is a coupled climate-ocean-terrestrial biosphere-carbon cycle model that allows extensive exploration of key physical and chemical interactions among individual components of the Earth system, as well as among carbon cycle, climate change and ocean circulation.

"A good understanding of climate change, ocean circulation, the ocean carbon cycle and feedback mechanisms is crucial for a reliable projection of atmospheric carbon dioxide concentration and resultant climate change," Jain said. The model is described in the September issue of the Journal of Geophysical Research -- Oceans.

Using the model, Jain and Cao studied the effectiveness of oceanic carbon sequestration by the direct injection of carbon dioxide at different locations and depths.

They found that climate change has a big impact on the oceans' ability to store carbon dioxide. The effect was most pronounced in the Atlantic Ocean. The researchers presented their findings in the May issue of the journal Geophysical Research Letters.

"When we ran the model without the climate feedback mechanisms, the Pacific Ocean held more carbon dioxide for a longer time," Cao said. "When we added the feedback mechanisms, however, the retention time in the Atlantic Ocean proved far superior. Injecting carbon dioxide into the Atlantic Ocean would be more effective than injecting it at the same depth in either the Pacific Ocean or the Indian Ocean."

Future climate change could affect both the uptake of carbon dioxide in the ocean basins and the ocean circulation patterns themselves, Jain said. As sea-surface temperatures increase, the density of the water decreases and thus slows the ocean thermohaline circulation, so the ocean's ability to absorb carbon dioxide also decreases. This leaves more carbon dioxide in the atmosphere, exacerbating the problem.

"At the same time, the reduced ocean circulation will decrease the ocean mixing, which decreases the ventilation to the atmosphere of carbon injected into the deep ocean," Jain said. "Our model results show that this effect is more dramatic in the Atlantic Ocean."

Sequestering carbon in the deep ocean is not a permanent solution for reducing the amount of carbon dioxide in the atmosphere, the researchers report. "Carbon dioxide dumped in the oceans won't stay there forever," Jain said. "Eventually it will percolate to the surface and into the atmosphere."

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Lethal Needle Blight Epidemic May Be Related To Climate Change
Vancouver BC (SPX) Sep 02, 2005
Biologists studying a lethal blight of lodgepole pines in northwestern British Columbia present strong evidence in the September issue of BioScience that climate change is to blame for the outbreak.







  • Researchers Take 'LEAD' To Improve Hurricane, Tornado Predictions
  • Northrop Grumman Provides Operational/Damage Assessment Of Hurricane Katrina
  • US Has Accepted One Billion Dollars In International Aid: Official
  • Asia Vulnerable To New Orleans-Style Tragedy

  • Climate Change Will Affect Carbon Sequestration In Oceans, Model Shows
  • Lethal Needle Blight Epidemic May Be Related To Climate Change
  • Lethal Needle Blight Epidemic May Be Related To Climate Change
  • Meteor Dust Could Affect Climate, Study Suggests

  • Appreciating The CryoSat Challenge - Guy Ratier, Project Manager
  • Using Satellites To Investigate 'Greening' Trends Across Canada And Alaska
  • Orbimage Releases New Satellite Images of Katrina Aftermath Over the Gulfcoast
  • CryoSat Flight Control Team In Intensive Training

  • US Oil Starts To Flow Week On From Katrina
  • GlobeTel Announces Letter Of Intent With Solar, Fuel Cell Research Consortium
  • Oil Prices Cool As US Energy Production Improves After Katrina
  • US Oil Industry Crawls Back To Life After Katrina

  • Ebola Menaces Great Ape Populations Of Central Africa
  • Unusual Antibiotics Show Promise Against Deadly Superbugs
  • Novel Plague Virulence Factor Identified
  • The Web: 'Net Slowing Spread Of HIV

  • Guerrillas Threaten Gorillas In Volatile Eastern DR Congo
  • Building Life From Star-Stuff
  • Training Of Golden Eagles: Kyrgyzstan's Thriving Tradition
  • Darwinism On Trial In Kansas

  • Canada To Press Chinese President Over Pollution
  • Sickness Spreads Among Hurricane Holdouts
  • Katrina Disease Kills Five
  • Prosecutors Reject Newmont's Arguments In Indonesia Pollution Trial

  • Parts Of Brain Battle Over Decisions
  • New Techniques Study The Brain's Chemistry, Neuron By Neuron
  • Virginia Tech Research, Graduate Program Focus On Interfaces
  • Microscopic Brain Imaging In The Palm Of Your Hand

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement