Subscribe free to our newsletters via your
. Earth Science News .




CLIMATE SCIENCE
Closer look at microorganism provides insight on carbon cycling
by Staff Writers
Chicago IL (SPX) Jul 20, 2015


An Argonne/University of Tennessee research team reconstructed the crystal structure of BAP, a protein involved in the process by which marine archaea release carbon, to determine how it functioned, as well as its larger role in carbon cycling in marine sediments. Research was performed at the Advanced Photon Source and the Advanced Protein Characterization Facility. Image courtesy Andrzej Joachimiak/Argonne National Laboratory. For a larger version of this image please go here.

Some of the world's tiniest organisms may have a large impact on climate change. Researchers from the U.S. Department of Energy's Argonne National Laboratory and the University of Tennessee found that microorganisms called archaea living in marine sediments use completely novel enzymes to break down organic matter into carbon dioxide.

These single-celled archaea eat organic carbon in marine sediments. Enzymes in the archaea break down large carbon molecules into smaller units. This process releases carbon dioxide and methane into the water and eventually, into the atmosphere.

However, as the temperature of oceans and bodies of freshwater increases, this carbon cycling process accelerates. The temperature at the bottom of the ocean, for example, is approximately two to four degrees Celsius (35 to 39 degrees Fahrenheit). According to Andrzej Joachimiak, Argonne distinguished fellow and director of the Structural Biology Center, if the ocean temperature rises one or two degrees, the rate of carbon release might increase.

"About 40 percent of Earth's organic carbon is stored in marine sediments," Joachimiak said. "An increase in temperature and acceleration of the carbon cycling process in these sediments is a major concern."

Joachimiak said scientists are uncertain about how fast archaea process carbon and whether the release is accelerating. Once researchers have these statistics, they may find ways to better predict the environment's response to a changing climate.

This understanding starts at the molecular level. Using resources at the Advanced Photon Source, a DOE Office of Science User Facility, and the Advanced Protein Characterization Facility, the research team produced and crystallized bathyaminopeptidase, or BAP - one of the enzymes found in the archaea - to look into its structure and observe how it operates. They found that BAP plays an important role in breaking down proteins and, consequently, the turnover of atmospheric carbon.

The biggest challenge the researchers had was determining BAP's function, because no previously cultured organisms shared a close ancestry. These types of organisms are considered microbial "dark matter" because their physiologies are unknown and they have never been grown in a lab.

And because it is difficult to study their physiologies, scientists cannot determine their precise impact on ecosystems and major global events. For example, BAP was found to be structurally similar to the known amino acid ester hydrolase, but had evolved to serve an entirely different function.

Despite this challenge, the researchers demonstrated that detailed characterization of enzymes from microbial dark matter can be done without first having to grow those organisms in the lab, which may be difficult or time-consuming.

"Being able to characterize proteins directly from microbial dark matter, without requiring that they first be grown in a lab, opens up limitless possibilities for discovering novel functions of these strange organisms that control the breakdown of carbon in marine sediments," said Karen Lloyd, assistant professor in the department of microbiology at the University of Tennessee.

According to Karolina Michalska, assistant protein crystallographer in the Biosciences Division, it was originally believed that bacteria were the primary players in the degradation of proteins in marine sediments. But the research shows that archaea are also involved in the process.

"It seems that archaea have a larger role in organic carbon, or protein, degradation than we previously realized," Michalska said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Argonne National Laboratory
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Copenhagen faces bumpy road to carbon neutrality
Copenhagen (AFP) July 16, 2015
Copenhagen says it is on track to become the world's first carbon neutral capital by 2025, but even after emissions fell more than expected some critics dismiss the plan as a vanity project. The Scandinavian city launched its carbon neutrality scheme in 2009, when it hosted the UN Climate Change Conference. Visitors to the Danish capital quickly become aware of its clean energy credentia ... read more


CLIMATE SCIENCE
Free meals offer comfort to Nepal quake victims

Nepal unveils subsidy-heavy $8.19 bn post-quake budget

S. Korea selects China consortium for Sewol ferry salvage

Global warming to fuel migration, terrorism: report

CLIMATE SCIENCE
'White graphene' structures can take the heat

For faster, larger graphene add a liquid layer

Disney gives sneak peek for planned China theme park

Better memory with faster lasers

CLIMATE SCIENCE
China begins construction of 'world's tallest' dam

Syria's Aleppo suffering three-week 'water crisis'

Less than half pay controversial Irish water charges

Rescue saves rare Philippine turtles from 'brink of extinction'

CLIMATE SCIENCE
Study predicting 'mini ice age' is being second-guessed

Arctic nations bar commercial fishing around North Pole

Study finds high geothermal heating beneath West Antarctic Ice Sheet

Strong geothermal heating measured beneath West Antarctic Ice Sheet

CLIMATE SCIENCE
Potential of blue LEDs as novel chemical-free food preservation technology

Oregon study suggests organic farming needs direction to be sustainable

Insects may be the answer to consumer demand for more protein

Smart cornfields of the future

CLIMATE SCIENCE
NanoSIMS ion probe measures volcanic cycles at Yellowstone

Volcanoes shut Indonesian airports during holiday rush

Thousands urged to evacuate as Typhoon Nangka hits Japan

Tropical storm forms off US, to stalk Canada

CLIMATE SCIENCE
Kenya says Shebab militants killed in US drone strike in Somalia

Nigeria's Buhari sacks top military chiefs

At least 11 dead in twin suicide bombing in Cameroon

US condemns 'horrific' attacks by Boko Haram in Chad

CLIMATE SCIENCE
Continued destruction of Earth's plant life places humans in jeopardy

Indonesia jails orangutan trader caught with baby ape

Fossils indicate human activities have disturbed ecosystem resilience

Neuroscientists establish brain-to-brain networks in primates, rodents




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.