. | . |
Collisions After Moon Formation Remodeled Early Earth by Staff Writers San Antonio TX (SPX) Dec 05, 2017
Southwest Research Institute scientists recently modeled the protracted period of bombardment following the Moon's formation, when leftover planetesimals pounded the Earth. Based on these simulations, scientists theorize that Moon-sized objects delivered more mass to the Earth than previously thought. Early in its evolution, Earth sustained an impact with another large object, and the Moon formed from the resulting debris ejected into an Earth-orbiting disk. A long period of bombardment followed, the so-called "late accretion," when large bodies impacted the Earth delivering materials that were accreted or integrated into the young planet. "We modeled the massive collisions and how metals and silicates were integrated into Earth during this 'late accretion stage,' which lasted for hundreds of millions of years after the Moon formed," said SwRI's Dr. Simone Marchi, lead author of a Nature Geoscience paper outlining these results. "Based on our simulations, the late accretion mass delivered to Earth may be significantly greater than previously thought, with important consequences for the earliest evolution of our planet." Previously, scientists estimated that materials from planetesimals integrated during the final stage of terrestrial planet formation made up about half a percent of the Earth's present mass. This is based on the concentration of highly "siderophile" elements - metals such as gold, platinum and iridium, which have an affinity for iron - in the Earth's mantle. The relative abundance of these elements in the mantle points to late accretion, after Earth's core had formed. But the estimate assumes that all highly siderophile elements delivered by the later impacts were retained in the mantle. Late accretion may have involved large differentiated projectiles. These impactors may have concentrated the highly siderophile elements primarily in their metallic cores. New high-resolution impact simulations by researchers at SwRI and the University of Maryland show that substantial portions of a large planetesimal's core could descend to, and be assimilated into, the Earth's core - or ricochet back into space and escape the planet entirely. Both outcomes reduce the amount of highly siderophile elements added to Earth's mantle, which implies that two to five times as much material may have been delivered than previously thought. "These simulations also may help explain the presence of isotopic anomalies in ancient terrestrial rock samples such as komatiite, a volcanic rock," said SwRI co-author Dr. Robin Canup. "These anomalies were problematic for lunar origin models that imply a well-mixed mantle following the giant impact. We propose that at least some of these rocks may have been produced long after the Moon-forming impact, during late accretion."
Research Report: "Heterogeneous Delivery of Silicate and Metal to the Earth by Large Planetesimals," Simone Marchi et al., 2017 Dec. 4, Nature Geoscience
Washington (UPI) Nov 30, 2017 New analysis of the remains of a bird-like dinosaur called Anchiornis suggests feathered dinosaurs were fluffier than researchers thought. Modern birds are the evolutionary offspring of a group of feathered theropod dinosaurs. Together they comprise the group known as paravians - a group that included the famed Velociraptor. The fossilized remains of an Anchiornis specimen offer ... read more Related Links Southwest Research Institute Explore The Early Earth at TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |