. | . |
Could spraying particles into marine clouds help cool the planet by Staff Writers Seattle WA (SPX) Jul 26, 2017
The idea of geoengineering, also known as climate engineering, is very controversial. But as greenhouse gases continue to accumulate in our atmosphere, scientists are beginning to look at possible emergency measures. A new University of Washington study looks at the idea of marine cloud brightening, which a UW group is investigating as a promising strategy to offset global warming. The strategy would spray saltwater into the air to make marine clouds reflect more incoming solar rays. Small-scale tests of marine cloud brightening would also help answer scientific questions about clouds and aerosols, two UW atmospheric scientists say in a paper published in July in the journal Earth's Future. This dual goal for early-stage geoengineering tests would follow the U.S. National Academies of Sciences' 2015 recommendation that any tests of geoengineering also yield a scientific benefit. "A major, unsolved question in climate science is: How much do aerosol particles cool the planet?," said lead author Rob Wood, a UW professor of atmospheric sciences. "A controlled test would measure the extent to which we are able to alter clouds, and test an important component of climate models." Other co-authors are Thomas Ackerman, a UW professor of atmospheric sciences, Philip Rasch at the Department of Energy's Pacific Northwest National Laboratory and Kelly Wanser at the Ocean Conservancy. The authors are part of a group that is proposing to spray saltwater over oceans to cause a small increase in the brightness of marine clouds and boost their capacity to reflect sunlight. Doing so could be a short-term measure to offset global warming in a possible future emergency situation. In the meantime, it could also further understanding of the climate system. One of the biggest uncertainties in climate models is the clouds, which reflect sunlight in unpredictable ways. Water droplets can only condense on airborne particles, such as smoke, salt or human pollution. When the air contains more particles the same amount of moisture can form smaller droplets, which creates whiter, brighter, more reflective clouds. Climate scientists believe pollution since the Industrial Revolution has created brighter clouds that reflect more sunlight, offsetting the warming from greenhouse gases, which trap long-wave radiation. But they can't pin down the size of the effect or predict how much it might change in the future. "Testing out marine cloud brightening would actually have some major benefits for addressing both questions," Wood said. "Can we perturb the clouds in this way, and are the climate models correctly representing the relationship between clouds and aerosols?" The proposal is now waiting on funding from government or private donors. For several years, UW researchers have been working with a group of engineers in California's Bay Area to develop a nozzle that turns saltwater into tiny particles that could be sprayed high into the marine cloud layer. It's the first in a series of steps needed to implement the roughly three-year plan. The researchers propose to: + Produce a sprayer that is able to eject trillions of aerosol particles per second + Conduct initial lab tests of the sprayer (UW research scientist Dave Covert helped conduct wind-tunnel testing of a prototype nozzle in 2015 in the Bay Area) + Do preliminary outdoor tests in a coastal area that is fairly flat, relatively free of air pollution and prone to marine clouds (the group is currently seeking funding for proposed coastal tests in Monterey Bay) + Move to small-scale offshore tests If tests were successful, people might someday decide whether to use a scaled-up version to create a small increase in the reflection of sunlight over large swaths of the world's oceans. "We're talking about some kind of new world in terms of the ethical issues," Ackerman said. "But for climate, we're no longer in an era of 'do no harm.' We are altering the climate already. It's now a case of 'the lesser of two evils.'" Ackerman will speak July 27 in Newry, Maine, at the first Gordon Research Conference on Climate Engineering about the proposed testing plan. Another speaker is the leader of a Harvard University test of an alternate proposal to spray reflective particles high in the atmosphere. In addition to the paper on the scientific benefits of testing marine cloud brightening, a group of UW graduate students and professors published a recent paper on what specific measures might be feasible, ethical and scientifically useful for evaluating a cloud-brightening test. Authors include UW graduate students and faculty in philosophy, atmospheric science and civil engineering who were part of an interdisciplinary UW graduate course on geoengineering - among the first of its kind. The class was taught last winter by Ackerman and Stephen Gardiner, a UW philosophy professor who wrote a book on the ethics of deliberately tinkering with the planet's atmosphere. Ackerman has since written an essay about the teaching experience. He believes the interdisciplinary approach is the right way to proceed with geoengineering. "There's a science question about can we do it, but there's also an ethical question about should we do it, and a policy question about how would we do it," Ackerman said. "I'm an agnostic on this. I want to test geoengineering and see if it works. But the whole time we're working on this, I think we need to still be asking ourselves: 'Should we do it?'"
Washington (UPI) Jul 24, 2017 Scientists in the Netherlands have developed a promising new membrane material to filter CO2 emissions. Researchers believe the new ceramic, ion-conduction membrane will help curb greenhouse gas by trapping CO2 and converting it into fuel, though it may not be ready for commercial adoption for a few more years. Current carbon-capture technologies are rather inefficient and expens ... read more Related Links University of Washington Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |