Subscribe free to our newsletters via your
. Earth Science News .




WOOD PILE
Decoys could blunt spread of ash-killing beetles
by Staff Writers
University Park, PA (SPX) Feb 21, 2013


This is an emerald ash borer and decoy. Credit: Left, Michael J. Domingue; right, Drew P. Pulsifer, Penn State.

As the emerald ash borer ravages North American ash trees, threatening the trees' very survival, a team of entomologists and engineers may have found a way to prevent the spread of the pests.

Emerald ash borers (EABs), a type of beetle native to Asia, first appeared in the U.S. about 20 years ago. They are now moving east from Michigan, killing ash trees on the Eastern Seaboard as far south as North Carolina.

"Within 25 years, practically no ash trees may remain on either side of the St. Lawrence Seaway," said Akhlesh Lakhtakia, Charles Godfrey Binder Professor of Engineering Science and Mechanics at Penn State.

As their name implies, emerald ash borers are iridescent green. The beetles don't carry disease, but their larvae feed on the ash trees' sap, effectively killing the trees by depriving trees of their nourishment.

Thomas C. Baker, Distinguished Professor of Entomology at Penn State, knew that the male EAB locates a mate by flying over an ash tree, finding a female by identifying her green wings, which are folded over her back, and then dropping straight down onto her.

Baker and a post-doctoral fellow in his lab, Michael J. Domingue, were using dead female EABs for bait to trap the male beetles. Dead EAB decoys are not ideal for trapping, said Baker, because they are fragile and can sometimes disappear from the trap.

Baker then learned that Lakhtakia was able to replicate certain biological materials, such as fly eyes and butterfly wings. Baker posed the question: could Lakhtakia's technique visually replicate the unique female borer to create a better lure?

The two researchers, working with a graduate student in Lakhtakia's lab, Drew P. Pulsifer, created a mold of the top of the female beetle's body. The decoy beetle is made by a process of layering polymers with different refractive indexes to create the desired iridescence, and then stamping the resulting material into the mold. The researchers were able to create a color similar to the emerald ash borer's green wings by layering different types of polymer. Eventually they were able to find the right combination of polymers and number of layers in order to refract light and create a color similar to the beetle's own iridescent green. The researchers' findings are scheduled to be published in the April issue of the Journal of Bionic Engineering.

"Akhlesh's technique allows us to present males with different visual stimuli," said Baker, also a faculty member in the University's Huck Institutes of the Life Sciences. "We can manipulate more than that, but right now we are experimentally manipulating the visual decoy."

The researchers had planned a pilot test in central Pennsylvania, but were unable to carry it out due to unfavorable regional weather conditions. They also ran a pilot test in Hungary with a related beetle pest that bores into oak trees. The pilot in Hungary used two controls -- a dead EAB and a decoy made of the polymers, but not molded into the shape of a beetle -- and three types of stamped decoys: one lightly stamped, another with medium force and the final stamped heavily.

"The preliminary indication is that these stamped decoys were 40 percent better than recently dead females in luring and then trapping the males," said Lakhtakia.

The stamped decoys are relatively easy to mass produce, making them both easier to create and maintain and more successful at trapping males than dead female borers.

The purpose of the decoys is to trap the males so that populations of emerald ash borers can be detected in new locations quickly, paving the way for efficient use of other control methods, according to the researchers.

"This is a small dataset, but very encouraging," said Baker, who plans to test the decoys in the U.S. this summer.

Other members of the research team were Beverly G. Post, engineering science and mechanics undergraduate, Penn State; Mahesh S. Narkhede, plastics engineering graduate student and member of the Center for Advanced Materials, and Jayant Kumar, professor of physics and applied physics and director of the Center for Advanced Materials, both at University of Massachusetts Lowell; and Raul J. Martin-Palma, professor of applied physics, Universidad Autonomia de Madrid, Spain.

.


Related Links
Penn State
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
Wetland trees a significant overlooked source of methane
Bristol UK (SPX) Feb 18, 2013
Wetlands are a well-established and prolific source of atmospheric methane. Yet despite an abundance of seething swamps and flooded forests in the tropics, ground-based measurements of methane have fallen well short of the quantities detected in tropical air by satellites. In 2011, Sunitha Pangala, a PhD student at The Open University, who is co-supervised by University of Bristol research ... read more


WOOD PILE
British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

WOOD PILE
Engineers show feasibility of superfast materials

Sony bills PS4 console as gaming's future

Lessons from nature could lead to the creation of new materials

'Explorers' to don Google Internet glasses

WOOD PILE
Study of world's richest marine area shows size matters

Indonesia announces shark, manta ray sanctuary

Quantifying Sediment From 2011 Flood Into Louisianas Wetlands

Japanese scientists hunt for groundwater

WOOD PILE
Extreme winters impact fish negatively

ArcticNet will help improve standard of living in Canada's north

Ice age extinction shaped Australian plant diversity

European sat data confirms UW numbers that Arctic is on thin ice

WOOD PILE
Malawi's bountiful harvests and healthier children

Food science expert: Genetically modified crops are overregulated

US Court tilts toward Monsanto in battle with farmer

Dustbin to dinner: ministers served binned food

WOOD PILE
Flood research shows human habits die hard

Indonesia floods, landslides kill 17

Mystery gold gifts for tsunami-wracked Japan port

Shimmering water reveals cold volcanic vent in Antarctic waters

WOOD PILE
Rising Islamist threat in West Africa

Life expectancy surges in AIDS-hit SAfrican region

ICoast, Guinea vow peaceful resolution to border dispute

South Sudan president retires over 100 army generals

WOOD PILE
Stay cool and live longer?

Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement