Subscribe free to our newsletters via your
. Earth Science News .




EARLY EARTH
Developmental biologist proposes new theory of early animal evolution
by Staff Writers
Valhalla NY (SPX) Oct 12, 2012


illustration only

A New York Medical College developmental biologist whose life's work has supported the theory of evolution has developed a concept that dramatically alters one of its basic assumptions-that survival is based on a change's functional advantage if it is to persist.

Stuart A. Newman, Ph.D., professor of cell biology and anatomy, offers an alternative model in proposing that the origination of the structural motifs of animal form were actually predictable and relatively sudden, with abrupt morphological transformations favored during the early period of animal evolution.

Newman's long view of evolution is fully explained in his perspective article, "Physico-Genetic Determinants in the Evolution of Development," which is to be published in the October 12 issue of the journal Science, in a special section called Forces in Development. The paper has been selected for early online publication and a podcast interview with the scientist*.

Evolution is commonly thought to take place opportunistically, by small steps, with each change persisting, or not, based on its functional advantage. Newman's alternative model is based on recent inferences about the genetics of the single-celled ancestors of the animals and, more surprisingly, the physics of "middle-scale" materials.

Animal bodies and the embryos that generate them exhibit an assortment of recurrent "morphological motifs" which, on the evidence of the fossil record, first appeared more than a half billion years ago. During embryonic development of present-day animals, cells arrange themselves into tissues having non-mixing layers and interior cavities.

Embryos contain patterned arrangements of cell types with which they may form segments, exoskeletons and blood vessels. Developing bodies go on to fold, elongate, and extend appendages, and in some species, generate endoskeletons with repeating elements (e.g., the human hand).

These developmental motifs are strikingly similar to the forms assumed by nonliving condensed, chemically active, viscoelastic materials when they are organized by relevant physical forces and effects, although the mechanisms that generate the motifs in living embryos are typically much more complex.

Newman proposes that the ancestors of the present-day animals acquired these forms when ancient single-celled organisms came to reside in multicellular clusters and physical processes relevant to matter at this new (for cellular life) spatial scale were immediately mobilized.

The unicellular progenitors are believed to have contained genes of the "developmental-genetic toolkit" with which all present-day animals orchestrate embryonic development, though they used the genes for single-cell functions.

It was precisely these genes whose products enabled the ancestral clusters to harness the middle-scale physical effects that produced the characteristic motifs. And since not every ancestral cluster contained the same selection of toolkit genes, different body forms arose in parallel, giving rise to the modern morphologically distinct animal phyla.

Natural selection, acting over the hundreds of millions of years since the occurrence of these origination events led, according to Newman's hypothesis, to more complex developmental processes which have made embryogenesis much less dependent on potentially inconsistent physical determinants, although the "physical" motifs were retained.

As Newman describes in his article, this new perspective provides natural interpretations for puzzling aspects of the early evolution of the animals, including the "explosive" rise of complex body forms between 540 and 640 million years ago and the failure to add new motifs since that time.

The model also helps us to understand the conserved use of the same set of genes to orchestrate development in all of the morphologically diverse phyla, and the "embryonic hourglass" of comparative developmental biology: the observation that the species of a phylum can have drastically different trajectories of early embryogenesis (e.g., frogs and mice), but still wind up with very similar "body plans."

Podcast segment featuring the interview with Dr. Newman

.


Related Links
New York Medical College
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Researchers work across fields to uncover information about hadrosaur teeth
Gainesville, FL (SPX) Oct 12, 2012
An unusual collaboration between researchers in two disparate fields resulted in a new discovery about the teeth of 65-million-year-old dinosaurs. With the help of University of Florida mechanical engineering professor W. Gregory Sawyer and UF postdoctoral researcher Brandon Krick, Florida State University paleobiologist Gregory Erickson determined the teeth of hadrosaurs - an herbivore fr ... read more


EARLY EARTH
Planning can cut costs of disasters: World Bank

12 Chinese workers killed, 24 hurt in dormitory blaze

Far, far beyond wrist radios

World leaders meet on disaster management in Japan

EARLY EARTH
Swedish breakthrough in space on NASA satellite with electronics from AAC Microtec

US appeals court lifts ban on Samsung-Google phone

Focus on space debris: Envisat

Weizmann Institute Scientists observe quantum effects in cold chemistry

EARLY EARTH
Brazil activists, energy group to meet over Amazon dam

Freshwater Flows Into the Arctic and Southern Oceans Appear to Determine the Composition of Microbial Populations

Fisheries benefit from 400-year-old tradition

Brazil sets up special security force to protect Amazon

EARLY EARTH
Antarctic Sea Ice Reaches New Maximum Extent

Polarstern returns with new findings from the Central Arctic during the 2012 ice minimum

DRI scientist co-authors study outlining vast differences in polar ocean microbial communities

ESA satellites looking deeper into sea ice

EARLY EARTH
Struggling N. Ireland farmers get boost

Scientists Use New Method to Help Reduce Piglet Mortality

Unusual genetic structure confers major disease resistance trait in soybean

Unravelled mushroom genome offers many opportunities

EARLY EARTH
Japan's TEPCO admits downplaying tsunami risk

6.7 magnitude quake strikes off Indonesia's Papua

Floods kill 7 in Russian Caucasus: official

NASA's HS3 Mission Thoroughly Investigates Long-Lived Hurricane Nadine

EARLY EARTH
Thousands march in Mali to urge intervention against Islamists

Nigerian farmers sue Shell in Dutch case with global reach

Amnesty International calls on DRCongo to halt clashes in east

Nigerian army denies rampage, killing civilians after attack

EARLY EARTH
UN report warns of possible rise in child marriages

Chimps said attacking humans in Africa

New human neurons from adult cells right there in the brain

Dating encounters between modern humans and Neandertals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement