Subscribe free to our newsletters via your
. Earth Science News .




ICE WORLD
Enormous Aquifer Discovered Under Greenland Ice Sheet
by Maria-Jose Vinas for NASA Earth Science News
Greenbelt MD (SPX) Dec 25, 2013


A thin section of a core extracted from the aquifer by Koenig's team is held in front of the sun. Image Credit: NASA's Goddard Space Flight Center/Ludovic Brucker.

Buried underneath compacted snow and ice in Greenland lies a large liquid water reservoir that has now been mapped by researchers using data from NASA's Operation IceBridge airborne campaign.

A team of glaciologists serendipitously found the aquifer while drilling in southeast Greenland in 2011 to study snow accumulation. Two of their ice cores were dripping water when the scientists lifted them to the surface, despite air temperatures of minus 4 F (minus 20 C). The researchers later used NASA's Operation Icebridge radar data to confine the limits of the water reservoir, which spreads over 27,000 square miles (69,930 square km) - an area larger than the state of West Virginia. The water in the aquifer has the potential to raise global sea level by 0.016 inches (0.4 mm).

"When I heard about the aquifer, I had almost the same reaction as when we discovered Lake Vostok [in Antarctica]: it blew my mind that something like that is possible," said Michael Studinger, project scientist for Operation IceBridge, a NASA airborne campaign studying changes in ice at the poles. "It turned my view of the Greenland ice sheet upside down - I don't think anyone had expected that this layer of liquid water could survive the cold winter temperatures without being refrozen."

Southeast Greenland is a region of high snow accumulation. Researchers now believe that the thick snow cover insulates the aquifer from cold winter surface temperatures, allowing it to remain liquid throughout the year. The aquifer is fed by meltwater that percolates from the surface during the summer.

The new research is being presented in two papers: one led by University of Utah's Rick Forster that was published on Dec. 22 in the journal Nature Geoscience and one led by NASA's Lora Koenig that has been accepted for publication in the journal Geophysical Research Letters. The findings will significantly advance the understanding of how melt water flows through the ice sheet and contributes to sea level rise.

When a team led by Forster accidentally drilled into water in 2011, they weren't able to continue studying the aquifer because their tools were not suited to work in an aquatic environment. Afterward, Forster's team determined the extent of the aquifer by studying radar data from Operation IceBridge together with ground-based radar data. The top of the water layer clearly showed in the radar data as a return signal brighter than the ice layers.

Koenig, a glaciologist with NASA's Goddard Space Flight Center in Greenbelt, Md., co-led another expedition to southeast Greenland with Forster in April 2013 specifically designed to study the physical characteristics of the newly discovered water reservoir. Koenig's team extracted two cores of firn (aged snow) that were saturated with water.

They used a water-resistant thermoelectric drill to study the density of the ice and lowered strings packed with temperature sensors down the holes, and found that the temperature of the aquifer hovers around 32 F (zero C), warmer than they had expected it to be.

Koenig and her team measured the top of the aquifer at around 39 feet (12 meters) under the surface. This was the depth at which the boreholes filled with water after extracting the ice cores. They then determined the amount of water in the water-saturated firn cores by comparing them to dry cores extracted nearby.

The researchers determined the depth at which the pores in the firn close, trapping the water inside the bubbles - at this point, there is a change in the density of the ice that the scientists can measure. This depth is about 121 feet (37 meters) and corresponds to the bottom of the aquifer. Once Koenig's team had the density, depth and spatial extent of the aquifer, they were able to come up with an estimated water volume of about 154 billion tons (140 metric gigatons). If this water was to suddenly discharge to the ocean, this would correspond to 0.016 inches (0.4 mm) of sea level rise.

Researchers think that the perennial aquifer is a heat reservoir for the ice sheet in two ways: melt water carries heat when it percolates from the surface down the ice to reach the aquifer. And if the trapped water were to refreeze, it would release latent heat. Altogether, this makes the ice in the vicinity of the aquifer warmer, and warmer ice flows faster toward the sea.

"Our next big task is to understand how this aquifer is filling and how it's discharging," said Koenig. "The aquifer could offset some sea level rise if it's storing water for long periods of time. For example after the 2012 extreme surface melt across Greenland, it appears that the aquifer filled a little bit. The question now is how does that water leave the aquifer on its way to the ocean and whether it will leave this year or a hundred years from now."

.


Related Links
IceBridge at NASA
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
Greenland ice stores liquid water year-round
Salt Lake City UT (SPX) Dec 27, 2013
Researchers at the University of Utah have discovered a new aquifer in the Greenland Ice Sheet that holds liquid water all year long in the otherwise perpetually frozen winter landscape. The aquifer is extensive, covering 27,000 square miles. The reservoir is known as a "perennial firn aquifer" because water persists within the firn - layers of snow and ice that don't melt for at least one ... read more


ICE WORLD
Uruguay will keep peacekeepers in Haiti through 2014

Companies Donate Satellite Capacity And Ground Infrastructure Services To Philippines

Philippines launches $8.17 bn Haiyan rebuilding plan

Stunned Kerry says US won't abandon typhoon-hit Philippines

ICE WORLD
Europe's Gaia telescope detaches from Fregat-MT upper stage

Sailing satellites into safe retirement

Researchers Design First Battery-Powered Invisibility Cloaking Device

'Macrocells' influence corrosion rate of submerged marine concrete structures

ICE WORLD
Saving Fiji's coral reefs linked to forest conservation upstream

Drought and climate change: An uncertain future?

Saving the Great Plains water supply

Climate change puts 40 percent more people at risk of absolute water scarcity

ICE WORLD
Enormous Aquifer Discovered Under Greenland Ice Sheet

Revealed: Vast water store beneath Greenland's ice

New actors in the Arctic ecosystem: Atlantic amphipods are now reproducing in Arctic waters

Arctic sea ice volume up from record low

ICE WORLD
UNL Research Raises Concerns About Future Global Crop Yield Projections

Efforts to curb climate change require greater emphasis on livestock

Availability of food increases as countries' dependence on food trade grows

Coastal ocean aquaculture can be environmentally sustainable

ICE WORLD
New volcanic island off Japan could be permanent, scientists say

'World is behind you', Ban tells Philippine typhoon survivors

Italy volcano eruption dies down, airport re-opens

Post-Sandy, Long Island barrier systems appear surprisingly sound

ICE WORLD
DR Congo arrests rebel leader accused of war crimes

South Sudan army advances on rebel-held town

US aircraft attacked, fighting escalates in South Sudan

Ugandan troops deployed in South Sudan capital: report

ICE WORLD
Prismatic social network follows interests

Neanderthal genome shows early human interbreeding, inbreeding

Fossil throat bone suggests Neanderthals had power of speech

Sunlight adaptation of Neanderthal genome found in 65 percent of modern East Asians




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement