. | . |
|
. |
by Staff Writers Tel Aviv, Israel (SPX) Jul 27, 2011
The health implications of polluting the environment weigh increasingly on our public consciousness, and pharmaceutical wastes continue to be a main culprit. Now a Tel Aviv University researcher says that current testing for these dangerous contaminants isn't going far enough. Dr. Dror Avisar, head of the Hydro-Chemistry Laboratory at TAU's Department of Geography and the Human Environment, says that, when our environment doesn't test positive for the presence of a specific drug, we assume it's not there. But through biological or chemical processes such as sun exposure or oxidization, drugs break down, or degrade, into different forms - and could still be lurking in our water or soil. In his lab, Dr. Avisar is doing extensive testing to determine how drugs degrade and identify the many forms they take in the environment. He has published his findings in Environmental Chemistry and the Journal of Environmental Science and Health.
Replicating nature "If we don't find a particular compound, we don't see contamination - but that's not true," Dr. Avisar explains. "We may have several degradation products with even higher levels of bioactivity." Not only do environmental scientists need to identify the degraded products, but they must also understand the biological-chemical processes that produce them in natural environments. When they degrade, compounds form new chemicals entirely, he cautions. For the first time, Dr. Avisar and his research group have been working to simulate environmental conditions identical to our natural environment, down to the last molecule, in order to identify the conditions under which compounds degrade, how they degrade, and the resulting chemical products. Among the factors they consider are sun exposure, water composition, temperatures, pH levels and organic content. Currently using amoxicillin, a common antibiotic prescribed for bacterial infections such as strep throat, as a test case, Dr. Avisar has successfully identified nine degradation products with different levels of stability. Two may even be toxic, he notes.
Classifying compounds with a fine-tooth comb "It's important to talk about the new chemicals in our environment, derived from parent drugs. They are part of the mixture," Dr. Avisar warns. "Chemicals do not simply disappear - we must understand what they've turned into. We are dealing with a whole new range of contaminants."
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |