. Earth Science News .
WATER WORLD
Extreme downpours could increase fivefold across parts of the US
by Staff Writers
Boulder CO (SPX) Dec 06, 2016


The figure shows the expected increase in the number of summertime storms that produce extreme precipitation at century's end compared to the period 2000 - 2013. Image courtesy Andreas Prein. For a larger version of this image please go here.

At century's end, the number of summertime storms that produce extreme downpours could increase by more than 400 percent across parts of the United States - including sections of the Gulf Coast, Atlantic Coast, and the Southwest - according to a new study by scientists at the National Center for Atmospheric Research (NCAR).

The study, published in the journal Nature Climate Change, also finds that the intensity of individual extreme rainfall events could increase by as much as 70 percent in some areas. That would mean that a storm that drops about 2 inches of rainfall today would be likely to drop nearly 3.5 inches in the future.

"These are huge increases," said NCAR scientist Andreas Prein, lead author of the study. "Imagine the most intense thunderstorm you typically experience in a single season. Our study finds that, in the future, parts of the U.S. could expect to experience five of those storms in a season, each with an intensity as strong or stronger than current storms."

The study was funded by the National Science Foundation (NSF), NCAR's sponsor, and the Research Partnership to Secure Energy for America.

"Extreme precipitation events affect our infrastructure through flooding, landslides and debris flows," said Anjuli Bamzai, program director in NSF's Directorate for Geosciences, which funded the research. "We need to better understand how these extreme events are changing. By supporting this research, NSF is working to foster a safer environment for all of us."

A year of supercomputing time
An increase in extreme precipitation is one of the expected impacts of climate change because scientists know that as the atmosphere warms, it can hold more water, and a wetter atmosphere can produce heavier rain. In fact, an increase in precipitation intensity has already been measured across all regions of the U.S. However, climate models are generally not able to simulate these downpours because of their coarse resolution, which has made it difficult for researchers to assess future changes in storm frequency and intensity.

For the new study, the research team used a new dataset that was created when NCAR scientists and study co-authors Roy Rasmussen, Changhai Liu, and Kyoko Ikeda ran the NCAR-based Weather Research and Forecasting (WRF) model at a resolution of 4 kilometers, fine enough to simulate individual storms. The simulations, which required a year to run, were performed on the Yellowstone system at the NCAR-Wyoming Supercomputing Center.

Prein and his co-authors used the new dataset to investigate changes in downpours over North America in detail. The researchers looked at how storms that occurred between 2000 and 2013 might change if they occurred instead in a climate that was 5 degrees Celsius (9 degrees Fahrenheit) warmer - the temperature increase expected by the end of the century if greenhouse gas emissions continue unabated.

Prein cautioned that this approach is a simplified way of comparing present and future climate. It doesn't reflect possible changes to storm tracks or weather systems associated with climate change. The advantage, however, is that scientists can more easily isolate the impact of additional heat and associated moisture on future storm formation.

"The ability to simulate realistic downpours is a quantum leap in climate modeling. This enables us to investigate changes in hourly rainfall extremes that are related to flash flooding for the very first time," Prein said. "To do this took a tremendous amount of computational resources."

Impacts vary across the U.S.
The study found that the number of summertime storms producing extreme precipitation is expected to increase across the entire country, though the amount varies by region. The Midwest, for example, sees an increase of zero to about 100 percent across swaths of Nebraska, the Dakotas, Minnesota, and Iowa. But the Gulf Coast, Alabama, Louisiana, Texas, New Mexico, Arizona, and Mexico all see increases ranging from 200 percent to more than 400 percent.

The study also found that the intensity of extreme rainfall events in the summer could increase across nearly the entire country, with some regions, including the Northeast and parts of the Southwest, seeing particularly large increases, in some cases of more than 70 percent.

A surprising result of the study is that extreme downpours will also increase in areas that are getting drier on average, especially in the Midwest. This is because moderate rainfall events that are the major source of moisture in this region during the summertime are expected to decrease significantly while extreme events increase in frequency and intensity. This shift from moderate to intense rainfall increases the potential for flash floods and mudslides, and can have negative impacts on agriculture.

The study also investigated how the environmental conditions that produce the most severe downpours might change in the future. In today's climate, the storms with the highest hourly rainfall intensities form when the daily average temperature is somewhere between 20 and 25 degrees C (68 to 77 degrees F) and with high atmospheric moisture.

When the temperature gets too hot, rainstorms become weaker or don't occur at all because the increase in atmospheric moisture cannot keep pace with the increase in temperature. This relative drying of the air robs the atmosphere of one of the essential ingredients needed to form a storm.

In the new study, the NCAR scientists found that storms may continue to intensify up to temperatures of 30 degrees C because of a more humid atmosphere. The result would be much more intense storms.

"Understanding how climate change may affect the environments that produce the most intense storms is essential because of the significant impacts that these kinds of storms have on society," Prein said.

"The future intensification of hourly precipitation extremes"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Center for Atmospheric Research
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Study shows many lakes getting murkier, but gives hope for improvement
Madison WI (SPX) Dec 02, 2016
A study of more than 5,000 Wisconsin lakes shows that nearly a quarter of them have become murkier in the past two decades. It also shows this trend could get worse as a changing climate leads to increased precipitation. However, the study - led by researchers at the University of Wisconsin-Madison and the Wisconsin Department of Natural Resources - reveals that reducing the amount of agri ... read more


WATER WORLD
For Mosul displaced, the added pain of divided families

Refugees rehoused in Greece as temperatures drop

UT professor develops algorithm to improve online mapping of disaster areas

Ukraine moves giant new safety dome over Chernobyl

WATER WORLD
New technology of ultrahigh density optical storage researched at Kazan University

Earth's 'technosphere' now weighs 30 trillion tons

A watershed moment in understanding how H2O conducts electricity

Researchers take first look into the 'eye' of Majoranas

WATER WORLD
Coral survey reveals 5,000-year-old genotypes

600,000 risk losing water in war-scarred Ukraine

As oceans empty, Kenya fishermen must adapt or disappear

500,000 Iraqis face 'catastrophic' Mosul water shortages: UN

WATER WORLD
Permafrost loss changes Yukon River chemistry with global implications

Arctic freeze slows down

American scientists discover the first Antarctic ground beetle

A reindeer's perilous journey in Swedish Lapland

WATER WORLD
S. Korea confirms more cases of deadly bird flu

EU warns no extension for British farm subsidies

Indigenous people eat 15 times more seafood than non-indigenous people

The economy of cold soil blues

WATER WORLD
One dead, 17 hurt in Peru earthquake

The farmers, their little pigs and the wolves: an Italy quake survival tale

Cyclic change within magma reservoirs affects the explosivity of volcanic eruptions

Groundwater helium level could signal potential risk of earthquake

WATER WORLD
Fidel Castro's military forays in Africa

US seeks UN arms embargo against South Sudan

Uganda nabs suspect in $120 mn fake arms deal

Africa waits and wonders on Trump's foreign policy

WATER WORLD
Human ancestor 'Lucy' was a tree climber, new evidence suggests

The role of physical environment in the 'broken windows' theory

Scientist uses 'dinosaur crater' rocks, prehistoric teeth to track ancient humans

Genes for speech may not be limited to humans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.