Subscribe free to our newsletters via your
. Earth Science News .




CLIMATE SCIENCE
Global warming 'hiatus' never happened
by Staff Writers
Stanford CA (SPX) Sep 18, 2015


File image.

An apparent lull in the recent rate of global warming that has been widely accepted as fact is actually an artifact arising from faulty statistical methods, Stanford scientists say.

The study, titled "Debunking the climate hiatus" and published online this week in the journal Climatic Change, is a comprehensive assessment of the purported slowdown, or hiatus, of global warming. "We translated the various scientific claims and assertions that have been made about the hiatus and tested to see whether they stand up to rigorous statistical scrutiny," said study lead author Bala Rajaratnam, an assistant professor of statistics and of Earth system science.

The finding calls into question the idea that global warming "stalled" or "paused" during the period between 1998 and 2013. Reconciling the hiatus was a major focus of the 2013 climate change assessment by the Intergovernmental Panel on Climate Change (IPCC).

Using a novel statistical framework that was developed specifically for studying geophysical processes such as global temperature fluctuations, Rajaratnam and his team of Stanford collaborators have shown that the hiatus never happened.

"Our results clearly show that, in terms of the statistics of the long-term global temperature data, there never was a hiatus, a pause or a slowdown in global warming," said Noah Diffenbaugh, a climate scientist in the School of Earth, Energy and Environmental Sciences, and a co-author of the study.

Faulty ocean buoys
The Stanford group's findings are the latest in a growing series of papers to cast doubt on the existence of a hiatus. Another study, led by Thomas Karl, the director of the National Centers for Environmental Information of the National Oceanic and Atmospheric Administration (NOAA) and published recently in the journal Science, found that many of the ocean buoys used to measure sea surface temperatures during the past couple of decades gave cooler readings than measurements gathered from ships. The NOAA group suggested that by correcting the buoy measurements, the hiatus signal disappears.

While the Stanford group also concluded that there has not been a hiatus, one important distinction of their work is that they did so using both the older, uncorrected temperature measurements as well as the newer, corrected measurements from the NOAA group.

"By using both datasets, nobody can claim that we made up a new statistical technique in order to get a certain result," said Rajaratnam, who is also a fellow at the Stanford Woods Institute for the Environment. "We saw that there was a debate in the scientific community about the global warming hiatus, and we realized that the assumptions of the classical statistical tools being used were not appropriate and thus could not give reliable answers."

More importantly, the Stanford group's technique does not rely on strong assumptions to work. "If one makes strong assumptions and they are not correct, the validity of the conclusion is called into question," Rajaratnam said.

A different approach
Rajaratnam worked with Stanford statistician Joseph Romano and Earth system science graduate student Michael Tsiang to take a fresh look at the hiatus claims. The team methodically examined not only the temperature data but also the statistical tools scientists were using to analyze the data. A look at the latter revealed that many of the statistical techniques climate scientists were employing were ones developed for other fields such as biology or medicine, and not ideal for studying geophysical processes. "The underlying assumptions of these analyses often weren't justified," Rajaratnam said.

For example, many of the classical statistical tools often assume a random distribution of data points, also known as a normal or Gaussian distribution. They also ignore spatial and temporal dependencies that are important when studying temperature, rainfall and other geophysical phenomena that can change daily or monthly, and which often depend on previous measurements. For example, if it is hot today, there's a higher chance that it will be hot tomorrow because a heat wave is already in place.

Global surface temperatures are similarly linked, and one of the clearest examples of this can be found in the oceans. "The ocean is very deep and can retain heat for a long time," said Diffenbaugh, who is also a senior fellow at the Woods Institute. "The temperature that we measure on the surface of the ocean is a reflection not just of what's happening on the surface at that moment, but also the amount of trapped heat beneath the surface, which has been accumulating for years."

While designing a framework that would take temporal dependencies into account, the Stanford scientists quickly ran into a problem. Those who argue for a hiatus claim that during the 15-year period between 1998 and 2013, global surface temperatures either did not increase at all, or they rose at a much slower rate than in the years before 1998. Statistically, however, this is a hard claim to test because the number of data points for the purported hiatus period is relatively small, and most classical statistical tools require large numbers of data points.

There is a workaround, however. A technique that Romano invented in 1992, called "subsampling," is useful for discerning whether a variable - be it surface temperature or stock prices - has changed in the short term based on limited amount of data. "In order to study the hiatus, we took the basic idea of subsampling and then adapted it to cope with the small sample size of the alleged hiatus period," Romano said. "When we compared the results from our technique with those calculated using classical methods, we found that the statistical confidence obtained using our framework is 100 times stronger than what was reported by the NOAA group."

The Stanford group's technique also handled temporal dependency in a more sophisticated way than in past studies. For example, the NOAA study accounted for temporal dependency when calculating sea surface temperature changes, but it did so in a relatively simple way, with one temperature point being affected only by the temperature point directly prior to it. "In reality, however, the temperature could be influenced by not just the previous data points, but six or 10 points before," Rajaratnam said.

Pulling marbles out of a jar
To understand how the Stanford group's subsampling technique differs from the classical techniques that had been used before, imagine placing 50 colored marbles, each one representing a particular year, into a jar. The marbles range from blue to red, signifying different average global surface temperatures.

"If you wanted to determine the likelihood of getting 15 marbles of a certain color pattern, you could repeatedly pull out 15 marbles at a time, plot their average color on a graph, and see where your original marble arrangement falls in that distribution," Tsiang said. "This approach is analogous to how many climate scientists had previously approached the hiatus problem."

In contrast, the new strategy that Rajaratnam, Romano and Tsiang invented is akin to stringing the marbles together before placing them into the jar. "Stringing the marbles together preserves their relationships to one another, and that's what our subsampling technique does," Tsiang said. "If you ignore these dependencies, you can alter the strength of your conclusions or even arrive at the opposite conclusion."

When the team applied their subsampling technique to the temperature data, they found that the rate of increase of global surface temperature did not stall or slow down from 1998 to 2013 in a statistically significant manner. In fact, the rate of change in global surface temperature was not statistically distinguishable between the recent period and other periods earlier in the historical data.

The Stanford scientists say their findings should go a long way toward restoring confidence in the basic science and climate computer models that form the foundation for climate change predictions.

"Global warming is like other noisy systems that fluctuate wildly but still follow a trend," Diffenbaugh said. "Think of the U.S. stock market: There have been bull markets and bear markets, but overall it has grown a lot over the past century. What is clear from analyzing the long-term data in a rigorous statistical framework is that, even though climate varies from year-to-year and decade-to-decade, global temperature has increased in the long term, and the recent period does not stand out as being abnormal."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Upslope migration of tropical plants due to climate change
Aarhus, Denmark (SPX) Sep 15, 2015
The plants on the highest mountain in Ecuador have migrated more than 500 meters to higher altitudes during the last two centuries. This is determined in a new study, in which Aarhus University researchers compared Humboldt's data from 1802 with current conditions. Although most of the world's species diversity is found in tropical areas, there are very few studies that have examined wheth ... read more


CLIMATE SCIENCE
Fukushima dumps first batch of once-radioactive water in sea

Babies and children among 34 dead in Aegean migrant boat sinking

Mexican FM urges 'exhaustive' probe into Egypt tourist deaths

Charity that helped academics flee Nazis aids Syrians and Iraqis

CLIMATE SCIENCE
First new cache-coherence mechanism in 30 years

One step closer to a new kind of computer

Researchers develop 'instruction manual' for futuristic metallic glass

DARPA seeks new composite process for making small parts

CLIMATE SCIENCE
US navy agrees to limit sonar, explosives near marine mammals

Half of marine life wiped out in 40 years: WWF

Southern Ocean removing carbon dioxide from atmosphere more efficiently

Study links large dams with malaria infections

CLIMATE SCIENCE
Arctic mosquitoes thriving under climate change, Dartmouth study finds

Burning remaining fossil fuel could cause 60-meter sea level rise

Archaeologists piece together how crew survived 1813 shipwreck in Alaska

Blankets cover Swiss glacier in vain effort to halt icemelt

CLIMATE SCIENCE
Study of US farm data shows loss of crop diversity

French winemakers hunt for climate change-resistant grape

Scientists learn how to predict plant size

Pay farmers to help the environment, but perverse subsidies not

CLIMATE SCIENCE
Japan warns tourists on Mount Aso after eruption

All missing people found after Japan floods: authorities

Flash flood toll rises to eight in US state of Utah

Fifteen killed in Utah flash floods

CLIMATE SCIENCE
Shots fired as Burkina Faso guards seize president, PM

Mozambique opposition boycotts peace talks

Horse ban in NE Nigeria after Boko Haram attacks

Sudan police break up Omdurman protest with tear gas: witnesses

CLIMATE SCIENCE
Scientists report earlier date of shift in human ancestors' diet

Fossil trove adds a new limb to human family tree

Bonobos use finger-pointing, hand gestures to communicate

Ancient human shoulders reveal links to ape ancestors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.