Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
How rain is dependent on soil moisture
by Staff Writers
Zurich, Switzerland (SPX) Mar 11, 2015


File image.

The water content of soil has a great impact on the regional climate, but many of the connections are still not clear. Researchers at ETH Zurich's Institute for Atmospheric and Climate Science, together with colleagues from Belgium and the Netherlands, examined when and where it rains most frequently on summer afternoons. They wanted to clarify whether more rain fell on days when the soil was dry or moist. And where exactly it was most likely to rain on these days.

The contradictory findings of other scientists was the reason for their study. Some researchers observed afternoon precipitation in particular on days with high soil moisture, while others seemingly came to the opposite conclusion - the rain fell in places where the soil, compared with surrounding areas, was driest.

The new study now provides some clarity. "On average, it rains most on days with high soil moisture," explains Benoit Guillod, the first author, who led the study as part of his doctoral thesis in the group of Sonia Seneviratne, Professor for Land-Climate Dynamics, and who is now working at the University of Oxford. "Most precipitation falls, however, over the driest sub-region."

The phenomena can be explained in the following way: over the course of a day, the sun warms the earth's surface, causing the water in lakes, rivers, oceans and the ground to evaporate. This water vapour rises throughout the day, where it meets colder layers of air and condenses. It then starts to rain. The soil's moisture content plays a decisive role, particularly in areas far from the coast: The more moisture in the soil, the more water can evaporate, which increases the likelihood of precipitation.

But where exactly does it rain? Within a humid area, the areas with lower soil moisture produce the warmest air, permitting the water vapour to rise the highest and thus meet the colder air layers the soonest. As a result, it rains most frequently at these locations.

Soil moisture as a climatic factor is still insufficiently researched
In order to reach this conclusion, the scientists had to consult myriad data. Although soil moisture is an important climatic factor, there is a lack of global information. Until now, Switzerland has been one of the few trailblazers in this area: a monitoring network, initiated by the Institute for Atmospheric and Climate Sciences, has been in existence since 2008.

Together with the Agroscope Reckenholz-Tanikon and MeteoSwiss, ETH has established 19 sites with soil sensors across Switzerland as part of the SwissSMEX project. The soil temperature and moisture content are recorded at various depths.

Such detailed measurements are rare worldwide. For the study, scientists had to rely on satellite data, which delivered information regarding the moisture at the soil surface to a depth of two to three centimetres. For an accurate examination of water evaporation, however, the data from the surface was not sufficient.

Much water evaporates through the vegetation as plants absorb water through their roots from deep in the soil and transport it up. The scientists estimated the soil moisture up to a depth of one metre; to do so, in addition to data on precipitation and surface soil moisture, they also used information on radiation and temperature.

More than 100,000 rain events analysed
"We laid a grid over the earth's surface, and with the help of an algorithm we identified more than 100,000 individual rain events between 2002 and 2011, and we then analysed the soil moisture before these events," explains Guillod. Previous studies were either limited to the spatial aspect - where it rains - or the temporal aspect - when it rains.

"Our study was the first to show the overall temporal and spatial correlation between soil moisture and precipitation," says Guillod.

Nevertheless, he warns against premature conclusions: "The question of when exactly rainfall occurs is not yet completely clear due to the complexity of the process." Higher performance computers, detailed simulations and model experiments should deliver further answers in the future about the extent to which rain events are influenced by soil moisture and atmospheric processes.

The answers to these questions might help a better understanding of other climate processes in the future.

"They may allow further conclusions to be drawn, for example, about the interaction between soil moisture and plant growth," explains Seneviratne. Such information may serve, for example, as the basis for research on the ramifications of large-scale irrigation systems in farming. Or they could shed light on whether the expansion of arid areas could be curbed through planting and irrigation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Penn researchers show how rivers creep and flow to shape landscapes over time
University Park PA (SPX) Mar 10, 2015
Rivers drive the evolution of Earth's surface by eroding and depositing sediment. But for nearly a century, geologists have puzzled over why theoretical models, which use principles of physics to predict patterns of sediment transport in rivers, have rarely matched observations from nature. "Anybody that needs to predict when particles on a landscape will move, such as when and how erosion ... read more


WATER WORLD
Water, electricity cuts shut Comoros main hospital

Surviving the 'most explosive era of infrastructure expansion' in 9 steps

More Filipinos pushed into poverty by Haiyan, high rice prices

Did climate change help spark the Syrian war?

WATER WORLD
Google gearing Android for virtual reality: report

New paint makes tough self-cleaning surfaces

Video game makers grapple with need for diversity

Biomolecular force generation based on the principle of a gas spring

WATER WORLD
Melting glaciers create noisiest places in ocean

American rower eyes finish after transatlantic odyssey

Nutrient pollution damages streams in ways previously unknown

Penn researchers show how rivers creep and flow to shape landscapes over time

WATER WORLD
Permafrost's turn of the microbes

Genetics reveals where emperor penguins survived the last ice age

Combined Arctic ice observations show decades of loss

Emperor penguins may have suffered in ice age cold: study

WATER WORLD
Dartmouth-led team identifies circadian clock gene that strengthens crop plant

How healthy is genetically modified soybean oil?

Chinese cyber-dissident takes farmers' land fight online

Early herders' grassy route through Africa

WATER WORLD
Pre-1950 builds suffered most damage from 2014 Napa quake

Evidence indicates Yucatan Peninsula hit by tsunami 1,500 years ago

Lightning plus volcanic ash makes glass

Thousands evacuated in Argentina flooding

WATER WORLD
France begins troop drawdown in Central African Republic

Mali government signs peace deal, Tuareg rebels delay

Zambia's ex-mines minister jailed for graft over Chinese licence

Nigerian army chief visits Baga, vows 'war is almost ended'

WATER WORLD
Ancient fossils reveal diversity in the body structure of human ancestors

Researchers map switches that shaped the evolution of the human brain

Discovery of jaw by ASU team sheds light on early Homo

Earliest known fossil of the genus Homo dates to 2.8 to 2.75 million years ago




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.