. | . |
How sponges undermine coral reefs from within by Staff Writers Amsterdam, Netherlands (SPX) Jan 28, 2019
Coral reefs are demolished from within, by bio-eroding sponges. Seeking refuge from predators, these sponges bore tunnels into the carbonate coral structures, thus weakening the reefs. Scientists from the Royal NIOZ Netherlands Institute for Sea Research have uncovered how the sponges hollow out and take over reef skeletons. This finding, published in Scientific Reports on Thursday January 24th, helps to explain why sponges erode reefs faster as atmospheric CO2 levels rise. With their three-dimensional structures, coral reefs provide ecosystem building blocks, hotspots for living organisms and natural coastal protection against waves. Worldwide, coral reefs are under pressure of the consequences of climate change, such as ocean acidification. NIOZ-first author Alice Webb explains why and how sponges contribute to the collapse of coral reefs.
Why and how do sponges excavate coral reefs? Bio-eroding sponges bore into coral skeletons, not to feed on the calcium carbonate, but to protect their own tissue from predators by hiding in the hard coral structure. To make the tunnels, they use a combination of chemical and mechanical demolition techniques. First the sponge pumps acidified fluid onto the coral to dissolve and chip off calcium carbonate pieces; then it removes the chips from the boring pit by contracting its tissue, resembling smooth muscle tissue. Sponges filter huge amounts of water constantly for feeding and breathing. They suck in water, take all the food particles and then spit the filtered water out. Chips of coral reef are expelled by the same route through these filtering canals, and out of the sponge through the so-called osculum.
How does ocean acidification help sponges break down coral? By doing so, they make the surface of the skeleton more acidic, which helps to dissolve the skeleton. If more CO2 is dissolved in the seawater, the proton concentration rises and the sponge will simply have to spend less energy on lowering the pH at the sponge/coral interface.
Why was the breaking-down mechanism still unknown? In the last decade, researchers have tried to localise the etching site using microelectrodes (pH probes) but this approach did not succeed. We combined a number of 'tricks' to open up the sponge-carbonate boundary. We grew sponges on small pieces of calcite minerals that we could manipulate to observe the sponge-carbonate interface directly. The actual observation was done using fluorescence microscopy by visualising pH (acid) and the way the pH was controlled by the sponge.
What are the implications of your findings?
Research Report: pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges
When coral species vanish, their absence can imperil surviving corals Atlanta GA (SPX) Jan 24, 2019 Waves of annihilation have beaten coral reefs down to a fraction of what they were 40 years ago, and what's left may be facing creeping death: The effective extinction of many coral species may be weakening reef systems thus siphoning life out of the corals that remain. In the shallows off Fiji's Pacific shores, two marine researchers from the Georgia Institute of Technology for a new study assembled groups of corals that were all of the same species, i.e. groups without species diversity. When Co ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |