. | . |
Large-scale climatic warming could increase persistent haze in Beijing by Staff Writers Beijing, China (SPX) Mar 19, 2018
Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHEs). Severe PHEs not only lead to a sharp decrease in visibility, causing traffic hazards and disruptions, and, hence, affecting economic activities, but also induce serious health problems such as respiratory illnesses and heart disease. While the increased pollutant emissions serve as the most important reason, changes in regional atmospheric circulation associated with large-scale climate warming are found to play a role as well. A recent study published in Atmospheric Chemistry and Physics by Dr. PEI Lin at the Beijing Urban Meteorological Institute and Prof. YAN Zhongwei at the Institute of Atmospheric Physics Chinese Academy of Sciences and their colleagues demonstrated a significant positive trend of PHEs in Beijing for the winters from 1980 to 2016 and its close relationship to an increasing frequency of extreme anomalous southerly episodes in North China, as a result of a weakened East Asian winter monsoon (EAWM) system. They further pointed out that over the period 1900-2016, the EAWM index was significantly correlated with the sea surface temperature anomalies (SSTA) over the northwestern Pacific, which exhibited a wavy positive trend, with an enhanced positive phase since the mid-1980s. "This paper reveals a new point of view for understanding the increasing PHEs in Beijing", said YAN. In fact, the results allowed scientists to depict a mechanism to explain how large-scale climatic warming could increase PHEs in Beijing via changes in the typical regional atmospheric circulations. "It is crucial to take into account the impact of long-term climatic change on the regional atmospheric conditions when making efforts in controlling local air pollution such as PHEs in Beijing." Suggested YAN.
Removing heavy metals from water Lausanne, Switzerland (SPX) Mar 16, 2018 According to the World Health Organization almost 1 billion people do not have access to clean drinking water, and that number is expected to increase with climate change. Meanwhile, our endlessly rising energy needs and use of heavy metals in industrial processes have maximized our exposure to toxic materials in water. Current commercial methods to remove heavy metals including lead from municipal drinking water tend to be costly and energy-consuming, without being sufficiently efficient. Less co ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |