Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Let There Be Light
by Staff Writers
Santa Barbara CA (SPX) Oct 23, 2014


Todd Oakley, professor and vice chair in UCSB's Department of Ecology, Evolution and Marine Biology.

A longstanding question among scientists is whether evolution is predictable. A team of researchers from UC Santa Barbara may have found a preliminary answer. The genetic underpinnings of complex traits in cephalopods may in fact be predictable because they evolved in the same way in two distinct species of squid.

Last, year, UCSB professor Todd Oakley and then-Ph.D. student Sabrina Pankey profiled bioluminescent organs in two species of squid and found that while they evolved separately, they did so in a remarkably similar manner. Their findings are published in the Proceedings of the National Academy of Science.

Oakley, professor and vice chair of UCSB's Department of Ecology, Evolution and Marine Biology, and Pankey, now a postdoctoral scholar at the University of New Hampshire, leveraged advances in sequencing technology and cutting-edge genomic tools to test predictability in the evolution of biological light production.

They chose to work with the Hawaiian bobtail squid (Euprymna scolopes) and the swordtip squid (Uroteuthis edulis), a Japanese species used for sushi. These distantly related species are two of five genera known to have bioluminescent organs called photophores. The photophores contain symbiotic, light-emitting bacteria, and the squid are capable of controlling the aperture of their organ to modulate how much light is produced.

The scientists wanted to know how similar the two species' photophores are in terms of their genetic makeup. To find the answer, they sequenced all of the genes expressed in these light organs, something that could not be done using older sequencing technology.

"They are much more similar than we expected in terms of their genetic makeup," Oakley said.

"Usually when two complicated organs evolve separately we would expect them to take very different evolutionary paths to arrive where they are today. The unexpectedly similar genetic makeup demonstrates that these two squid species took very similar paths to evolve these traits."

More specifically, the researchers demonstrated that bioluminescent organs originated repeatedly during squid evolution and then showed that the global gene expression profiles (transcriptomes) underlying those organs are strikingly - even predictably - similar.

To confirm their hypothesis and findings, Oakley and Pankey enlisted the assistance of statisticians from the University of Washington and UCLA, who developed new statistical methods to test the idea of convergent (separately evolved) origins.

"I did find some individual genes that were counter to the main pattern, which means we can no longer study just one gene anymore in order to test these questions about the genetic basis of convergence," said Pankey. "We're at the point now where we need to - and can - study all of them."

Some previous experiments have indicated that these squid use their bioluminescent capabilities for camouflage, as counterintuitive as that may seem. "If you imagine lying on your back in the deep ocean and looking up, almost all the light comes from straight above," Oakley explained.

"There's no structure like walls or trees to reflect the light, so if there's something above you, it's going to cast a shadow. The squid can produce light that then matches the light from behind them so it blocks their shadow to a viewer below, which is a type of camouflage."

The team's results demonstrate that the evolution of overall gene expression underlying convergent complex traits may be predictable. This finding is unexpected and could indicate unusually strong constraints: The probability of complex organs evolving multiple times with similar trajectories should be vanishingly small, noted Oakley.

Yet the team's novel bioinformatic approaches indicate the evolution of convergent phenotypes is associated with the convergent expression of thousands of genes.

"These results have broad implications for workers in the fields of evolution, genetics, genomics/bioinformatics, biomaterials, symbiosis, invertebrate zoology and evolutionary development," Oakley concluded.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
UC Santa Barbara
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
High-speed evolution in the lab powers genome analysis
Vienna, Austria (SPX) Oct 22, 2014
Life implies change. And this holds true for genes as well. Organisms require a flexible genome in order to adapt to changes in the local environment. Christian Schlotterer and his team from the Institute for Population Genetics at the University of Veterinary Medicine, Vienna study the genomes of entire populations. The scientists want to know why individuals differ from each other and ho ... read more


FLORA AND FAUNA
Philippines' Aquino criticises typhoon rebuilding delays

Natural disasters killed over 22,000 in 2013: Red Cross

Rescuers airlift 154 to safety after deadly Nepal storm

Glitzy Russian TV drama brings Chernobyl to new generation

FLORA AND FAUNA
Argentina launches its first telecom satellite

ORNL research reveals unique capabilities of 3-D printing

Light bending material facilitates the search for new particles

Goldilocks principle wrong for particle assembly

FLORA AND FAUNA
Leipzig researchers discover new functionality of molecular light switches

The breathing sand

China installs buoys in Pacific Ocean: report

Businesses struggle on drought-hit Californian lake

FLORA AND FAUNA
Icebergs once drifted to Florida, new climate model suggests

Peru glaciers shrink 40% in 44 years: government

Canada Inuits reach EU deal to resume seal-product exports

What is Happening with Antarctic Sea Ice

FLORA AND FAUNA
Chewing too much hassle? Japan's got just the thing

Building a bridge from basic botany to applied agriculture

Stomping out grape disease one vineyard at a time

Plant communities produce greater yield than monocultures

FLORA AND FAUNA
Rising above the risk: America's first tsunami refuge

Global surge of big earthquakes and implications for Cascadia

Massive debris pile reveals risk of huge tsunamis in Hawaii

Scientists say Hawaii could be hit by massive tsunami

FLORA AND FAUNA
Nigeria tries 59 soldiers on mutiny charges

Horn free: Lagos tries to tackle noise pollution

27 Chinese and local hostages released in Cameroon: govt

Six UN peacekeepers injured in C. Africa

FLORA AND FAUNA
Scientists reconstruct genome from 45,000-year-old skeleton

Ice Age people in Peru's Andes lived at extreme highs

Europeans lactose intolerant for 5,000 years after agriculture began

Identifying hidden minds in impaired consciousness




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.