![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Jul 26, 2018
Although drought and overgrown forests are often blamed for major fires in the western United States, new research using unique NASA before-and-after data from a megafire site indicates that highly localized winds sometimes play a much larger role - creating large, destructive fires even when regional winds are weak. The study was led by the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. It focused on the 2014 King Fire, using data from airborne instruments managed by NASA's Jet Propulsion Laboratory in Pasadena, California, with advanced computer simulations from NCAR. The King Fire occurred in the Sierra Nevada mountain range during California's severe multi-year drought and burned more than 97,000 acres (39,000 hectares). The study team found that winds - both very localized winds related to topography and winds created by the searing heat of the flames - were the reason the fire suddenly ran 15 miles (24 kilometers) up a steep canyon one afternoon. Winds like these, sometimes only a few hundred yards (meters) across, often go undetected by weather stations that may be several miles away. In fact, for several days before the fire, nearby weather stations measured only weak winds. "This brings into question several widely held and largely unquestioned assumptions, such as very large fires being caused by the accumulation of vegetation, persistent dry conditions, or requiring extreme conditions," said NCAR scientist Janice Coen, the lead author of the study. In the King Fire, she pointed out, "Small-scale winds and winds generated by the fire had a much greater impact on this fire, and potentially others like it, than any of the other factors." JPL scientist Natasha Stavros, a coauthor on the study, said, "The NASA airborne measurements were unique in that we observed the forest's vertical structure before and after a fire. These observations let us better identify the type of fuel - grass, shrubs, or trees. That improved the model simulations, particularly of how the fire spread in areas where previous fires had burned or timber had been as harvested, and in areas where the burn severity was greatest."
Experimenting with a Megafire The area consumed by the King Fire, however, had been previously mapped by JPL's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS/ASTER Airborne Simulator (MASTER) instruments in visible and thermal infrared wavelengths, as well as by a U.S. Forest Service lidar instrument, resulting in an extensive database about the forest structure and vegetation types. In addition, the authors had access to airborne thermal imagery collected during the fire. The detailed data gave them a rare opportunity to recreate an actual wildfire within a sophisticated NCAR computer model that combines weather prediction and fire behavior, testing the importance of different factors. Simulations of the King Fire under more extreme drought conditions did not change the ultimate extent of the fire or greatly alter its expansion, and simulations with half of the actual fuel load (as might exist in a less overgrown forest) unfolded in about the same way as the real fire did. The scientists concluded that the fire became stronger in the canyon because of the inclined slopes. Drought conditions or increased vegetation did help the fire to generate the strong updraft that drew flames up the canyon slope. These factors had little impact while the fire was on flatter ground. "This is just one case, but it illustrates how the causes of a megafire have sometimes been misunderstood," Coen said. The study, titled "Deconstructing the King Megafire," was published in the journal Ecological Applications. The research was funded by NASA. For more information, see here
![]() ![]() Fires sweep much of Europe as countries swelter in the heat Paris (AFP) July 24, 2018 Dozens of wildfires have hit countries across northern Europe and Greece as a heatwave continues to hold across much of the continent. The fires have been particularly devastating in the Attica region around Athens, where dozens of people have died. Here is a round up of the impact of the fires and the soaring temperatures. - Greece - Greece's deadliest blazes in more than a decade have left 60 dead after wildfires ravaged the seaside areas around Athens. The bodies of 26 people, in ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |