|
. | . |
|
by Staff Writers Berkeley CA (SPX) Jan 29, 2015
Archaeologists continue to debate the reasons for the collapse of many Central American cities and states, from Teotihuacan in Mexico to the Yucatan Maya, and climate change is considered one of the major causes. A University of California, Berkeley, study sheds new light on this question, providing evidence that a prolonged period of below-average rainfall was partly responsible for the abandonment of one such city, Cantona, between A.D. 900 and A.D. 1050. At its peak, Cantona, located in a dry, volcanic basin (La Cuenca Oriental) east of today's Mexico City, was one of the largest cities in the New World, with 90,000 inhabitants. The area was a major source of obsidian and the city may have played a military role alongside an important trade route from the Veracruz coast into the highlands. To assess the climate in that area before and after Cantona's collapse, UC Berkeley geographers analyzed sediment cores from a lake located 20 miles south of the former city. They found evidence of a 650-year period of frequent droughts that extended from around A.D. 500 to about A.D. 1150. This was part of a long-term drying trend in highland Mexico that started 2,200 years ago, around 200 B.C. The climate became wetter again in about A.D. 1300, just prior to the rise of the Aztec empire. "The decline of Cantona occurred during this dry interval, and we conclude that climate change probably played a role, at least towards the end of the city's existence," said lead author Tripti Bhattacharya, a UC Berkeley graduate student. Surprisingly, the population of Cantona increased during the early part of the dry period, perhaps because of political upheaval elsewhere that increased the importance of the heavily fortified city, she said. Teotihuacan, less than 100 miles to the west, was in decline at the time, also possibly because of more frequent droughts. "In a sense the area became important because of the increased frequency of drought," said UC Berkeley associate professor of geography Roger Byrne. "But when the droughts continued on such a scale, the subsistence base for the whole area changed and people just had to leave. The city was abandoned." Bhattacharya, Byrne and their colleagues report their findings in an article appearing this week in the early edition of the journal Proceedings of the National Academy of Sciences. The UC Berkeley researchers analyzed lake cores provided by scientists at the National Autonomous University of Mexico in Juriquilla, Queretaro, Mexico and the German Research Centre for Geosciences in Potsdam, Germany.
Political upheaval and climate change Byrne, a member of the Berkeley Initiative on Global Change Biology (BiGCB) and curator of fossil pollen in the Museum of Paleontology, has studied sediment cores from many lakes in Mexico and California, and is particularly interested in possible links between climate change and human activities. Nearly 20 years ago, he learned of Cantona and traveled with students to the areas three times to obtain cores from lakes near the site, most of which are maar lakes created by magma explosions. They are deep and often contain undisturbed and regularly layered sediments ideal for chronological studies. German colleagues cored this particular lake, Aljojuca, in 2007, and Bhattacharya traveled to Potsdam to collect sediment samples. Oxygen isotope ratios in carbonate sediments are correlated with the ratio of precipitation to evaporation and thus indicate aridity. Organic material in the sediments was used for accelerator mass spectroscopy carbon-14 dating. "We can show that both the growth and decline of the site took place during a time period of frequent drought, which forces us to think in more nuanced ways about how political and social factors interact with environmental factors to cause social and cultural change," Bhattacharya said. "That makes the study particularly interesting." Bhattacharya noted that more studies are necessary to reconstruct the prehistoric climate of highland Mexico. Such studies could reveal the causes of prehistoric climatic change and whether they were similar to the factors that regulate the region's climate today, such as the El Nino/Southern Oscillation.
Related Links University of California - Berkeley Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |