. | . |
Making spines from sea water by Staff Writers Rehovot, Israel (SPX) Apr 10, 2017
Some sea creatures cover themselves with hard shells and spines, while vertebrates build skeletons out of the same minerals. How do these animals get the calcium they need to build these strong mineral structures? Professors Lia Addadi and Steve Weiner of the Weizmann Institute of Science's Structural Biology Department asked this question about sea urchins, which need to extract quite a few calcium ions from sea water to build their spines. The answer surprised them, and it could change the way scientists think about the process of biomineralization. Several years ago, Addadi and Weiner had discovered that sea urchins build their spines with tiny packets of "unorganized" material that hardens into crystal when laid in place. "So the question went back a step: How do they get the calcium ions they need to make this material in the first place?" says Addadi. "Free calcium is not abundant in sea water," adds Weiner, "so they need an efficient way to extract and concentrate the ions." To answer the question the researchers, including Netta Vidavsky, needed methods to observe the animal's cells "as is," that is, as they are in life, water included. For this the group turned to Dr. Andreas Schertel of Carl Zeiss Microscopy in Germany and Dr. Sefi Addadi of the Weizmann Institute of Science's Life Sciences Core Facilities. Very new cutting-edge techniques enabled them to observe thin slices of the cells in sea urchin embryos and then to reconstruct three-dimensional images of these cells and their intake of labeled calcium ions. "Even a few years ago, we could not have done this study," says Addadi. The images showed that sea urchin larval cells actually "drink" seawater, taking in drops of water and manipulating the ions in the water within the confines of the cell. This is in contrast to the theory that these cells take in only ions, one at a time, through special channels in their outer membranes. The cells they observed were filled with networks of bubbles called vacuoles that collect the calcium ions, evidently creating concentrated packages of calcium for building the spines. This method may be more energy efficient than taking in ions through channels (which the cells also did), but it presents another problem: The cells must be able to pick out the calcium as well as expel other ions in the sea water, especially the sodium and chloride. "Researchers may be busy for years to come figuring out how these cells manipulate the ions in the sea water they drink," says Weiner. Addadi and Weiner point out that this is not the first time this type of calcium ion intake has been observed. Prof. Jonathan Erez of the Hebrew University of Jerusalem had described this phenomenon in single-celled, hard-shelled microorganisms called foraminifera a decade ago. At the time, it was thought to be a "curiosity," but finding the same process in two very different creatures suggests that it may be quite widespread. Although we do not live in sea water, even the cells that build our bones may use a similar method to obtain calcium.
Sydney (AFP) April 7, 2017 Bees have much better eyesight than previously thought, scientists said Friday, allowing them to buzz away from approaching predators and navigate safely. Researchers already knew bees could see colours, but now they have discovered their vision is 30 percent clearer than earlier studies showed. Steven Wiederman, from the University of Adelaide's Medical School, said all previous researc ... read more Related Links Weizmann Institute of Science Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |