. | . |
Mechanics of the cell by Staff Writers Munich, Germany (SPX) Apr 22, 2016
Living cells must alter their external form actively, otherwise functions like cell division would not be possible. At the Technical University of Munich (TUM) the biophysicist Professor Andreas Bausch and his team have developed a synthetic cell model to investigate the fundamental principles of the underlying cellular mechanics. Living cells do not lead a relaxed life: They are perpetually busy adapting their physical shape. When they divide, cells must massively restructure their overall form. When they absorb material, their outer membrane must deform strongly. And when they move about, they must first decide what is front and what is back before their built-in molecular motors kick in, setting the cell into motion. Cells are living organisms with all kinds of dynamic functions. The ability of a cell to morph its shape is decisive. During cellular division these processes play an important role, whether in wound healing, embryonic development or spreading of cancer cells throughout the body. The ways in which cells spontaneously alter their shapes using only a few components is the subject of detailed investigation by the research team of the biophysicist Andreas Bausch, chair of Cellular Biophysics at TU Munich and member of the Cluster of Excellence Nanosystems Initiative Munich. The researchers hope the reconstruction will help them better understand the functions of complex cellular systems.
Model cells for investigations of cellular mechanics In addition, they added the protein aniline, which facilitates the joining of actin filaments to impart the cell structural stability, and myosin as a molecular motor, which the cells need to generate the energy required for cellular deformation. In their experiment, the researchers analyzed under which conditions the model cells spontaneously undergo deformations in which the cytoskeleton membrane either takes on a concave form or, in certain regions, forms a bubble-like protrusion in a process referred to as "blebbing". The forces exerted on the external form of the cells counteract respective forces in the lipid membrane. "The interplay between cytoskeleton and cell membrane holds the key to all changes in form," says Etienne Loiseau of Bausch's working group and lead author of the current study. "To date cytoskeletons and vesicles were normally observed separately. The interaction of these two essential components was hardly investigated."
Focusing on the essentials Bausch and his colleagues demonstrated that the interactions between the proteins in the presence of all other components are the key. It is only through the interplay of the various components that biological functions emerge. Evidently, the concentration of components is decisive for the manner in which cells alter their form. "Amazingly, the same system of proteins that affect the protuberance of membranes (blebbing) lead, in slightly different concentrations, merely to extreme deformations," says Bausch. "Understanding the interactions of the proteins in context is essential - it is the reciprocal actions of the proteins that define the functions."
Understanding the mechanisms of action "Our bottom-up approach based on the synthetic cell model is useful for understanding and explaining important functional relationships," says Professor Bausch. As yet, the experiments on cellular deformation only work in static systems. In their next step the scientists hope to reconstruct the dynamic processes, as well. They want to allow the formation and dispersion of bubbles in the cytoskeleton membrane as it occurs in nature, thereby creating artificial model cells that can exist and move about autonomously. Research paper: Shape remodeling and blebbing of active cytoskeletal vesicles Etienne Loiseau, Jochen A. M. Schneider, Felix C. Keber, Carina Pelzl, Gladys Massiera, Guillaume Salbreux and Andreas R. Bausch Science Advances, Vol. 2, no. 4, e1500465, Apr. 15, 2016
Related Links Technical University of Munich Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |