. Earth Science News .
FLORA AND FAUNA
Mechanics of the cell
by Staff Writers
Munich, Germany (SPX) Apr 22, 2016


A group of scientists headed by Professor Andreas Bausch, Chair of Cellular Biophysics at Technical University of Munich, has developed a synthetic cell model. Only a few components are decisive for the interplay between cytoskeleton and cell membrane, key to all changes in form. The simple model allows to understand and explain these important functional relationships. Image courtesy Etienne Loiseau and TUM. For a larger version of this image please go here.

Living cells must alter their external form actively, otherwise functions like cell division would not be possible. At the Technical University of Munich (TUM) the biophysicist Professor Andreas Bausch and his team have developed a synthetic cell model to investigate the fundamental principles of the underlying cellular mechanics.

Living cells do not lead a relaxed life: They are perpetually busy adapting their physical shape. When they divide, cells must massively restructure their overall form. When they absorb material, their outer membrane must deform strongly. And when they move about, they must first decide what is front and what is back before their built-in molecular motors kick in, setting the cell into motion.

Cells are living organisms with all kinds of dynamic functions. The ability of a cell to morph its shape is decisive. During cellular division these processes play an important role, whether in wound healing, embryonic development or spreading of cancer cells throughout the body.

The ways in which cells spontaneously alter their shapes using only a few components is the subject of detailed investigation by the research team of the biophysicist Andreas Bausch, chair of Cellular Biophysics at TU Munich and member of the Cluster of Excellence Nanosystems Initiative Munich. The researchers hope the reconstruction will help them better understand the functions of complex cellular systems.

Model cells for investigations of cellular mechanics
The outer shell of the model cell comprises a double-layered lipid membrane analogous to natural cell membranes. Inside the researchers placed biomolecules that perform important functions in animal cells. In their experiments on the deformation of cells they used oblong actin filaments, which are normally found in the cytoskeleton.

In addition, they added the protein aniline, which facilitates the joining of actin filaments to impart the cell structural stability, and myosin as a molecular motor, which the cells need to generate the energy required for cellular deformation.

In their experiment, the researchers analyzed under which conditions the model cells spontaneously undergo deformations in which the cytoskeleton membrane either takes on a concave form or, in certain regions, forms a bubble-like protrusion in a process referred to as "blebbing". The forces exerted on the external form of the cells counteract respective forces in the lipid membrane.

"The interplay between cytoskeleton and cell membrane holds the key to all changes in form," says Etienne Loiseau of Bausch's working group and lead author of the current study. "To date cytoskeletons and vesicles were normally observed separately. The interaction of these two essential components was hardly investigated."

Focusing on the essentials
The model cell created in the project funded by the Cluster of Excellence Nanosystems Initiative Munich works with a small number of components. The respective concentrations of the involved proteins can be adjusted as required and precisely controlled.

Bausch and his colleagues demonstrated that the interactions between the proteins in the presence of all other components are the key. It is only through the interplay of the various components that biological functions emerge. Evidently, the concentration of components is decisive for the manner in which cells alter their form.

"Amazingly, the same system of proteins that affect the protuberance of membranes (blebbing) lead, in slightly different concentrations, merely to extreme deformations," says Bausch. "Understanding the interactions of the proteins in context is essential - it is the reciprocal actions of the proteins that define the functions."

Understanding the mechanisms of action
Although biologists managed to identify the involved proteins and genes in elaborate cell-biological and biochemical experiments, due to the complexity of the cells it is generally not possible to also understand the fundamental mechanisms of action.

"Our bottom-up approach based on the synthetic cell model is useful for understanding and explaining important functional relationships," says Professor Bausch.

As yet, the experiments on cellular deformation only work in static systems. In their next step the scientists hope to reconstruct the dynamic processes, as well. They want to allow the formation and dispersion of bubbles in the cytoskeleton membrane as it occurs in nature, thereby creating artificial model cells that can exist and move about autonomously.

Research paper: Shape remodeling and blebbing of active cytoskeletal vesicles Etienne Loiseau, Jochen A. M. Schneider, Felix C. Keber, Carina Pelzl, Gladys Massiera, Guillaume Salbreux and Andreas R. Bausch Science Advances, Vol. 2, no. 4, e1500465, Apr. 15, 2016


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technical University of Munich
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FLORA AND FAUNA
EMBL scientists reveal structure of nuclear pore's inner ring
Heidelberg, Germany (SPX) Apr 22, 2016
It was a 3D puzzle with over 1000 pieces, with only a rather fuzzy outline as a guide. But scientists at EMBL have now put enough pieces in place to see the big picture. In a study published in Science, they present their latest findings, bringing the nuclear pore complex into focus. The nuclear pore is a passage into the cell's nucleus. A typical cell has hundreds of these pores, playing ... read more


FLORA AND FAUNA
30 years on, Russia's Chernobyl victims say they have been abandoned

Lessons of Chernobyl disaster, 30 years on

Ecuador's president announces economic measures in wake of killer quake

NATO warns migrant smugglers 'shifting routes rapidly'

FLORA AND FAUNA
Thanks, actin, for the memories

Generation of tailored magnetic materials

Using methane rather than flaring it

Progress of simulating dynamics in heterogeneous materials

FLORA AND FAUNA
Island states come to UN ready to move on climate deal

Underwater 'zombie grass' signals trouble for Florida fishermen

Severe reduction in thermal tolerance projected for Great Barrier Reef

Criminal charges filed in Flint tainted water scandal

FLORA AND FAUNA
China spurs ships to use Arctic shipping route: report

Nansen gives birth to two icebergs

Ice streams can be slowed down by gas hydrates

Satellite images reveal dramatic tropical glacier retreat

FLORA AND FAUNA
The P tax cometh

A cellular sensor of phosphate levels

China wields increasing power in world wine market: study

Australia's biggest cattle firm says China-led bid preferred

FLORA AND FAUNA
New quake rattles jittery Ecuador

South American floods kill 12, force mass evacuations

Southern Africa drought triggers DR Congo food shortage

Record Balkan floods linked to jamming of giant airstreams

FLORA AND FAUNA
Burundi gunmen murder military officer: witness, army

Fighting for peace in South Sudan

South Sudan rebel delay fans fears for peace

South Sudan rebel homecoming fails again

FLORA AND FAUNA
How the brain consolidates memory during deep sleep

Bigger brains led to bigger bodies in our ancestors

Are humans the new supercomputer

Brain observed filing memories during sleep









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.