. | . |
Missing Link To Cloud Formation Found
Copenhagen, Denmark (SPX) Aug 19, 2009 The discovery of an unknown hitherto chemical compound in the atmosphere may help to explain how and when clouds are formed. The discovery of the so called dihydroxyepoxides (an aerosol-precursor), is reported in this week's issue of Science by a team comprising of researchers from the California Institute of Technology (Caltech) and the University of Copenhagen (UoC). Professor Henrik Kjaergaard from the Department of Chemistry at the UoC calls the new compounds a missing link in the formation of clouds. "We know that aerosols are important in the formation of clouds but, we didn't know much about how the aerosols themselves were formed. This new compound may be just what we were looking for," says the professor who has recently moved from University of Otago, New Zealand to fill his new appointment in Copenhagen. The new compound was originally found when a team of researchers from Caltech mounted a measuring device known as a Chemical Ionization Mass Spectrometer (CIMS) on an aeroplane, and flew it over the oaken forests of Northern America.
Maple Clouds Based on previous research, isoprene was expected to break down into smaller molecules. But previous research was done with air found over cities, where levels of the combustion by-product NOx are very high. And the chemicals formed when isoprene interacts with NOx do not easily form aerosols. However, when subjected to air as found over pristine stretches of forest, the fate of the tree-released hydrocarbons turned out to be a very different one. Without the NOx to skew the process, isoprene unexpectedly degraded into the new compound: dihydroxyepoxide. This new compound appears to be extremely reactive and likely to form aerosols.
Clouds: Central to Climate Studies The theoretical studies from Kjaergaar's group at the University of Otago, improved the CIMS technique and supported the chemical degradation mechanisms proposed. Discovering a new and unexpected atmospheric compound in the air over forests is fundamental research. Nevertheless, with manmade climate-change looming on the horizon, the research might find applications sooner that expected. The new aerosol-precursor may be extremely important when researchers attempt to compute projected climate change. "That means, that the new compound is a missing link in more that one sense", Professor Kjaergaard states. "Clouds can retain as well as block the heat of the sun, so, if we don't understand what drives the formation of clouds, our climate-models are bound to be less than exact". Share This Article With Planet Earth
Related Links University of Copenhagen The Air We Breathe at TerraDaily.com
Aura Marks Five Years Of Sky-High Atmosphere Research Pasadena CA (JPL) Aug 05, 2009 Imagine Earth without an atmosphere - without clouds, wind or air. Earth's atmosphere protects, transports, and reacts to life on Earth. Without our ozone layer, the surface of Earth would be subject to harsh radiation coming from the sun. Without good quality air, public health and ecosystems suffer. And changes in the makeup of the atmosphere - such as to carbon dioxide, methane, nitrous oxide ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2009 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |