. Earth Science News .
EARLY EARTH
Mystery solved: Ocean acidity in the last mass extinction
by Staff Writers
New Haven CT (SPX) Oct 23, 2019

A species of foraminifera called Heterohelix globulosa that were picked and isolated from the K-Pg boundary clay at Geulhemmerberg in the Netherlands. Each fossil measures between 150 and 212 microns.

A new study led by Yale University confirms a long-held theory about the last great mass extinction event in history and how it affected Earth's oceans. The findings may also answer questions about how marine life eventually recovered.

The researchers say it is the first direct evidence that the Cretaceous-Paleogene extinction event 66 million years ago coincided with a sharp drop in the pH levels of the oceans - which indicates a rise in ocean acidity.

The study appears in the online edition of the journal Proceedings of the National Academy of Sciences.

The Cretaceous-Paleogene die-off, also known as the K-Pg mass extinction event, occurred when a meteor slammed into Earth at the end of the Cretaceous period. The impact and its aftereffects killed roughly 75% of the animal and plant species on the planet, including whole groups like the non-avian dinosaurs and ammonites.

"For years, people suggested there would have been a decrease in ocean pH because the meteor impact hit sulphur-rich rocks and caused the raining-out of sulphuric acid, but until now no one had any direct evidence to show this happened," said lead author Michael Henehan, a former Yale scientist who is now at GFZ German Research Centre for Geosciences in Potsdam, Germany.

Turns out all they had to do was look at the foraminifera.

Foraminifera are tiny plankton that grow a calcite shell and have an amazingly complete fossil record going back hundreds of millions of years. Analysis of the chemical composition of foraminifera fossils from before, during, and after the K-Pg event produced a wealth of data about changes in the marine environment over time. Specifically, measurements of boron isotopes in these shells allowed the Yale scientists to detect changes in the ocean's acidity.

Previous K-Pg research had shown that some marine calcifiers - animal species that develop shells and skeletons from calcium carbonate - were disproportionately wiped out in the mass extinction. The new study suggests that higher ocean acidity (lower pH) may have prevented these calcifiers from creating their shells. This was important, researchers note, because these calcifiers made up an important part of the first rung on the ocean food chain, supporting the rest of the ecosystem.

"The ocean acidification we observe could easily have been the trigger for mass extinction in the marine realm," said senior author Pincelli Hull, assistant professor of geology and geophysics at Yale.

Meanwhile, the team's boron isotope analysis and modeling techniques may have reconciled some competing theories and puzzling facts relating to ocean life after the K-Pg event.

Why, for example, are carbon isotope signatures (analyzed from deep sea core samples) immediately after the K-Pg asteroid impact identical in fossil material from the sea floor and the surface waters, when normal carbon cycling in oceans should lead to different signatures?

One theory, the "Strangelove Ocean" theory, argued that for a time after K-Pg, the ocean was essentially dead and the normal carbon cycle just stopped. The problem with the "Strangelove Ocean," according to some researchers, is that many organisms on the sea floor that rely on food sinking from the ocean's surface continued unharmed across the K-Pg event - an unlikely occurrence in a dead ocean. Another popular theory, called the "Living Ocean," suggested that K-Pg killed off larger plankton species, disrupting the carbon cycle by making it harder for organic matter to sink to the deep sea, but allowed for some marine life to survive.

The new study splits the difference. It says the oceans had a major, initial loss of species productivity - by as much as 50% --followed by a transitional period in which marine life began to recover.

"In a way, we reconciled both of these 'Strangelove' and 'Living Ocean' scenarios," Henehan said. "Both of them were partially right; they just happened in sequence."

The new study also may have settled a question regarding ocean pH levels leading up to K-Pg. Some researchers have theorized that volcanic eruptions starting hundreds of thousands of years before K-Pg had progressively made Earth more prone to a mass extinction event. This should be reflected in a steady decline in ocean pH levels up until the extinction.

"What we can show is that there is no real signal of gradual pH decline in the ocean in the lead-up to K-Pg," Henehan said. "Our results do not support any major role for volcanic activity in priming the world for extinction."

One offshoot from the study may be its ability to help understand early Earth atmosphere and climate. The boron isotopes from foraminifera in this study are an excellent proxy for estimating carbon dioxide levels in the geological past, the authors said.


Related Links
Yale University
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Earth's original building blocks discovered in diamond-bearing rocks
Edmonton, Canada (SPX) Oct 18, 2019
Scientists have detected primordial chemical signatures preserved within modern kimberlites, according to new research by a multi-national team involving a University of Alberta scientist. The results provide critical insight for understanding the formation of Earth. "Knowing the chemical signature of Earth's original building blocks is the holy grail of geochemistry," said Graham Pearson, author on the study. "This knowledge can help us understand the formation of the planets in the solar system ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
American CEO faces French lawmakers over chemical plant blaze

Facebook devotes $1 bn to affordable housing in US

Distribution of highly radioactive microparticles in Fukushima revealed

Japan plans to postpone imperial parade over typhoon: media

EARLY EARTH
Turning plastic waste back into high-quality plastic with advanced steam cracking

Physicists shed new light on how liquids behave with other materials

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

Unique sticky particles formed by harnessing chaos

EARLY EARTH
The pirarucu: the giant prized fish of the Amazon

'Clear risks' for stability in China's Pacific lending

Navy diving system for sustained operations approved

Two decades of rain, snowfall from NASA's precipitation missions

EARLY EARTH
Russia discovers five Arctic islands uncovered by melting ice

A year trapped in Arctic ice

Development dilemma as eastern Greenland eyes tourism boost

Low sea-ice cover in the Arctic

EARLY EARTH
German farmers stage tractor protest over climate measures

Despite having enough food, humanity risks hunger 'crises': report

All-organic farming could increase UK emissions: study

Farmers' strike causes disruption across Netherlands

EARLY EARTH
Ghana flooding leaves 28 dead

Niger floods force 23,000 from their homes

Magma crystallization causes basaltic eruptions to turn explosive

California unveils early warning earthquake app

EARLY EARTH
Young climate activists in Africa struggle to be heard

Zimbabwe rights groups accuse govt of 'abuses'

For Russian business, big dreams in Africa

DR Congo militias burn, loot villages as they flee army

EARLY EARTH
Scientists find early humans moved through Mediterranean earlier than believed

Human brain, braincase evolved independently, researchers say

High-stakes conflict threatens DR Congo gorillas

Cemeteries offer evidence of social inequality in Bronze Age households









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.