. Earth Science News .
NASA Tsunami Research Makes Waves In Science Community

Using GPS data (purple arrows) to measure ground displacements, scientists replicated the December 2004 Indian Ocean tsunami, whose crests and troughs are shown here in reds and blues, respectively. The research showed GPS data can be used to reliably estimate a tsunami's destructive potential within minutes. Image credit: NASA/JPL
by Staff Writers
Pasadena CA (SPX) Jan 22, 2008
A wave of new NASA research on tsunamis has yielded an innovative method to improve existing tsunami warning systems, and a potentially groundbreaking new theory on the source of the December 2004 Indian Ocean tsunami.

In one study, published last fall in Geophysical Research Letters, researcher Y. Tony Song of NASA's Jet Propulsion Laboratory, Pasadena, Calif., demonstrated that real-time data from NASA's network of global positioning system (GPS) stations can detect ground motions preceding tsunamis and reliably estimate a tsunami's destructive potential within minutes, well before it reaches coastal areas. The method could lead to development of more reliable global tsunami warning systems, saving lives and reducing false alarms.

Conventional tsunami warning systems rely on estimates of an earthquake's magnitude to determine whether a large tsunami will be generated. Earthquake magnitude is not always a reliable indicator of tsunami potential, however. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both had almost the same magnitude from initial estimates. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms have negative societal and economic effects.

Song's method estimates the energy an undersea earthquake transfers to the ocean to generate a tsunami by using data from coastal GPS stations near the epicenter. With these data, ocean floor displacements caused by the earthquake can be inferred. Tsunamis typically originate at undersea boundaries of tectonic plates near the edges of continents.

"Tsunamis can travel as fast as jet planes, so rapid assessment following quakes is vital to mitigate their hazard," said Ichiro Fukumori, a JPL oceanographer not involved in the study. "Song and his colleagues have demonstrated that GPS technology can help improve both the speed and accuracy of such analyses."

Song's method works as follows: an earthquake's epicenter is located using seismometer data. GPS displacement data from stations near the epicenter are then gathered to derive seafloor motions. Based upon these data, local topography data and new theoretical developments, a new "tsunami scale" measurement from one to 10 is generated, much like the Richter Scale used for earthquakes. Song proposes using the scale to make a distinction between earthquakes capable of generating destructive tsunamis from those unlikely to do so.

To demonstrate his methodology on real earthquake-tsunamis, Song examined three historical tsunamis with well-documented ground motion measurements and tsunami observations: Alaska in 1964; the Indian Ocean in 2004; and Nias Island, Indonesia in 2005. His method successfully replicated all three. The data compared favorably with conventional seismic solutions that usually take hours or days to calculate.

Song said many coastal GPS stations are already in operation, measuring ground motions near earthquake faults in real time once every few seconds. "A coastal GPS network established and combined with the existing International GPS Service global sites could provide a more reliable global tsunami warning system than those available today," he said.

The theory behind the GPS study was published in the December 20 issue of Ocean Modelling. Song and his team from JPL; the California Institute of Technology, Pasadena, Calif.; University of California, Santa Barbara; and Ohio State University, Columbus, Ohio, theorized most of the height and energy generated by the 2004 Indian Ocean tsunami resulted from horizontal, not vertical, faulting motions.

The study uses a 3-D earthquake-tsunami model based on seismograph and GPS data to explain how the fault's horizontal motions might be the major cause of the tsunami's genesis.

Scientists have long believed tsunamis form from vertical deformation of seafloor during undersea earthquakes. However, seismograph and GPS data show such deformation from the 2004 Sumatra earthquake was too small to generate the powerful tsunami that ensued.

Song's team found horizontal forces were responsible for two-thirds of the tsunami's height, as observed by three satellites (NASA's Jason, the U.S. Navy's Geosat Follow-on and the European Space Agency's Environmental Satellite), and generated five times more energy than the earthquake's vertical displacements. The horizontal forces also best explain the way the tsunami spread out across the Indian Ocean. The same mechanism was also found to explain the data observed from the 2005 Nias earthquake and tsunami.

Co-author C.K. Shum of Ohio State University said the study suggests horizontal faulting motions play a much more important role in tsunami generation than previously believed. "If this is found to be true for other tsunamis, we may have to revise some early views on how tsunamis are formed and where mega tsunamis are likely to happen in the future," he said.

Community
Email This Article
Comment On This Article

Related Links
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Asia remembers tsunami victims three years on
Calang, Indonesia (AFP) Dec 26, 2007
Three years after Indian Ocean nations were lashed by massive tsunamis, sombre ceremonies were held Wednesday to recall those lost in one of the worst natural catastrophes in modern times.







  • Weary civilians at mercy of Gaza conflict
  • Philippines: Japan lends 174.6 million dlrs for volcano relief
  • Natural disasters taking greater global toll, UN report
  • High spirits drive speedy recovery after Indonesian quake

  • Carbon Disclosure Project to assess world business CO2 footprint
  • Spanish study warns of rising Mediterranean sea levels
  • 2007 Was Tied As Earth's Second Warmest Year
  • North American Birds Moving North As A Result Of Climate Change

  • SPACEHAB Subsidiary Wins NASA Orbiting Carbon Observatory Contract
  • Radical New Lab Fights Disease Using Satellites
  • SKorea decides to terminate satellite: space agency
  • Japanese satellite flops at map-making: official

  • DOE Releases Soybean Genome Assembly To Support Global Bioenergy Efforts
  • EU seeking greener energy but nuclear option fuels dissent
  • Coal-fired Poland in fighting mood over EU emissions rules
  • Iowa Testing Hybrid Fueled School Buses

  • Epidemic superbug strains evolved from one bacterium: study
  • Researchers Put The Bite On Mosquitoes
  • Exploration Of Lake Hidden Beneath Antarctica's Ice Sheet Begins
  • Monkey Malaria Widespread In Humans And Potentially Fatal

  • Bouncing Back From The Brink
  • Marsupial Lion Tops African Lion In Fight To Death
  • Predators Do More Than Kill Prey
  • Climate Influence On Deep Sea Populations

  • Japanese media criticises companies over fake 'recycled' goods
  • Obsolete Infrastructure Can Help Environment
  • Delhi residents cough, wheeze as pollution soars
  • Herons Persist In Chicago Wetlands Despite Exposure To Banned Chemicals

  • Higher China fines for stars breaking one-child rule: state media
  • Fueling And Feeding Bigfoot
  • English to be the world's 'language of choice': British PM
  • Contact Lenses With Circuits Lights A Possible Platform For Superhuman Vision

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement