. Earth Science News .
New Picture Of Lower Mantle Emerges From Laboratory Studies

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.
by Staff Writers
Tempe AZ (SPX) Jun 22, 2007
Laboratory measurements of a high-pressure mineral believed to exist deep within the Earth show that the mineral may not, as geophysicists hoped, have the right properties to explain a mysterious layer lying just above the planet's core. A team of scientists, led by Sebastien Merkel, of the University of California, Berkeley, made the first laboratory study of the deformation properties of a high-pressure silicate mineral named post-perovskite. The work appears in the June 22 issue of the scientific journal Science.

The team included Allen McNamara of Arizona State University's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. McNamara, a geophysicist, modeled the stresses the mineral would typically undergo as convection currents deep in Earth's mantle cause it to rise and sink. Also on the team were Atsushi Kubo and Thomas S. Duffy, Princeton University; Sergio Speziale, Lowell Miyagi and Hans-Rudolf Wenk, University of California, Berkeley; and Yue Meng, HPCAT, Carnegie Institution of Washington, Argonne, Ill.

"This the first time the deformation properties of this mineral have been studied at lower mantle temperatures and pressures," says McNamara. "The goal was to observe where the weak planes are in its crystal structure and how they are oriented." The results of the combined laboratory tests and computer models, he says, show that post-perovskite doesn't fit what is known about conditions in the lowermost mantle.

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.

Most of Earth's lower mantle is made of a magnesium silicate mineral called perovskite. In 2004, earth scientists discovered that under the conditions of the lower mantle, perovskite can change into a high-pressure form, which they dubbed post-perovskite. Since its discovery, post-perovskite has been geophysicists' favorite candidate to explain the composition of a mysterious layer that forms the bottom of Earth's lower mantle.

Known to earth scientists as D" (dee-double-prime), this layer averages 120 miles thick and lies directly above Earth's core. D" was named in 1949 by seismologist Keith Bullen, who found the layer from the way earthquake waves travel through the planet's interior. But the nature of D" has eluded scientists since Bullen's discovery.

"Our team found," says McNamara, "that while post-perovskite has some properties that fit what's known about D", our laboratory measurements and computer models show that post-perovskite doesn't fit one particular essential property." That property is seismic anisotropy, he says, referring to the fact that earthquake waves passing through D" become distorted in a characteristic way.

McNamara explains, "Down in the D" layer, the horizontal part of earthquake waves travel faster than the vertical parts. But in our laboratory measurements and models, post-perovskite produces an opposite effect on the waves."

He adds, "This appears to be a basic contradiction."

McNamara notes that the laboratory measurements, made by team members at Princeton University, were extremely difficult. They involved crushing tiny samples of perovskite on a diamond anvil until they changed into post-perovskite. Then the scientists shot X-rays through the samples to identify the mineral crystals' internal structure.

This information was used by other team members at the University of California, Berkeley, to model how these crystals would deform as the mantle flows. The deformation results let the scientists predict how the crystals would affect seismic waves passing through them.

McNamara's work modeled the slow churn of the mantle, in which convection currents in the rock rise and fall about as fast as fingernails grow, roughly an inch a year. He calculated stresses, pressures and temperatures to draw a detailed picture of where post-perovskite would be found. This let him profile the structure of the D" layer.

"All these computations have been in two dimensions," he says. "Our next step is to go to 3-D modeling."

Does their work rule out post-perovskite to explain the D" layer? "Not completely," says McNamara. "We've begun to study this newly found mineral in the laboratory, but the work isn't yet over."

He adds, "It's possible that post-perovskite does exist in the lowermost mantle, and another mineral is causing the seismic anisotropy we see there."

Email This Article

Related Links
Arizona State University
Dirt, rocks and all the stuff we stand on firmly



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Arizona Geophysicists Detect A Molten Rock Layer Deep Below The American Southwest
Tempe AZ (SPX) Jun 21, 2007
A sheet of molten rock roughly 10 miles thick spreads underneath much of the American Southwest, some 250 miles below Tucson, Ariz. From the surface, you can't see it, smell it or feel it. But Arizona geophysicists Daniel Toffelmier and James Tyburczy detected the molten layer with a comparatively new and overlooked technique for exploring the deep Earth that uses magnetic eruptions on the sun.







  • New Orleans Still At Risk Of Serious Flooding
  • Water Spray Latest Headache For Indonesian Mudflow Engineers
  • Building House Forms And Shapes For Better Hurricane Endurance
  • NOAA Satellites Ready For Active Hurricane Season

  • Dutch Data Shows China Surpassed The US In 2006 Carbon-Dioxide Emissions
  • Climate Models Consistent With Ocean Warming Observations
  • World Desertification Day Puts Spotlight On Neglected Crisis
  • UN Secretary General Points To Climate Change As Partly Behind Darfur Disaster

  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008
  • NASA Satellites Watch as China Constructs Giant Dam
  • Boeing Launches Italian Earth Observation Satellite

  • China Hits Back On Climate Change After Being Tagged Top Culprit
  • OPEC Wants Reasonable Price For Its Oil
  • Renewable Sources Contributed Nearly 10 Percent To US Electric Generation In 2006
  • US Official Emphasizes Enforcement Role in Energy Markets

  • Ancient Retrovirus Sheds Light On Modern Pandemic
  • Bird Flu Fears Reignited
  • Bono And Geldof blast G8 AIDS Pledge Farce
  • US Firm To Trial Bird Flu Vaccine In Indonesia And Hong Kong

  • Explorers To Use Robotic Vehicles To Hunt for Life And Vents On Arctic Seafloor
  • Ancient DNA Traces The Woolly Mammoth Disappearance
  • Book Makes Case For Using Evolution In Everyday Life
  • Study Shows Lizard Moms Dress Their Children For Success

  • Indonesian Activists Report Snoozing Newmont Judges
  • EPA Wants Tighter US Smog Controls
  • Human Noses To Sniff Out Pollutants Across China
  • Polluted Chinese River Hospitalises 61

  • UN Warns Aging Populations Will Require New Approaches
  • Etruscans Were Immigrants From Anatolia In Ancient Turkey
  • The High Cost Of The Beijing Olympics
  • New Findings Challenge Established Views About Human Genome

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement