. Earth Science News .
WATER WORLD
New system recovers fresh water from power plants
by Staff Writers
Boston MA (SPX) Jun 12, 2018

A typical 600-megawatt power plant, Varanasi says, could capture 150 million gallons of water a year, representing a value of millions of dollars. This represents about 20 to 30 percent of the water lost from cooling towers. With further refinements, the system may be able to capture even more of the output, he says.

A new system devised by MIT engineers could provide a low-cost source of drinking water for parched cities around the world while also cutting power plant operating costs.

About 39 percent of all the fresh water withdrawn from rivers, lakes, and reservoirs in the U.S. is earmarked for the cooling needs of electric power plants that use fossil fuels or nuclear power, and much of that water ends up floating away in clouds of vapor. But the new MIT system could potentially save a substantial fraction of that lost water - and could even become a significant source of clean, safe drinking water for coastal cities where seawater is used to cool local power plants.

The principle behind the new concept is deceptively simple: When air that's rich in fog is zapped with a beam of electrically charged particles, known as ions, water droplets become electrically charged and thus can be drawn toward a mesh of wires, similar to a window screen, placed in their path. The droplets then collect on that mesh, drain down into a collecting pan, and can be reused in the power plant or sent to a city's water supply system.

The system, which is the basis for a startup company called Infinite Cooling that last month won MIT's $100K Entrepreneurship Competition, is described in a paper published in the journal Science Advances, co-authored by Maher Damak PhD '17 and associate professor of mechanical engineering Kripa Varanasi. Damak and Varanasi are among the co-founders of the startup.

Varanasi's vision was to develop highly efficient water recovery systems by capturing water droplets from both natural fog and plumes of industrial cooling towers. The project began as part of Damak's doctoral thesis, which aimed to improve the efficiency of fog-harvesting systems that are used in many water-scarce coastal regions as a source of potable water.

Those systems, which generally consist of some kind of plastic or metal mesh hung vertically in the path of fogbanks that regularly roll in from the sea, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them. Varanasi and Damak wondered if there was a way to make the mesh catch more of the droplets - and found a very simple and effective way of doing so.

The reason for the inefficiency of existing systems became apparent in the team's detailed lab experiments: The problem is in the aerodynamics of the system. As a stream of air passes an obstacle, such as the wires in these mesh fog-catching screens, the airflow naturally deviates around the obstacle, much as air flowing around an airplane wing separates into streams that pass above and below the wing structure. These deviating airstreams carry droplets that were heading toward the wire off to the side, unless they were headed bang-on toward the wire's center.

The result is that the fraction of droplets captured is far lower than the fraction of the collection area occupied by the wires, because droplets are being swept aside from wires that lie in front of them. Just making the wires bigger or the spaces in the mesh smaller tends to be counterproductive because it hampers the overall airflow, resulting in a net decrease in collection.

But when the incoming fog gets zapped first with an ion beam, the opposite effect happens. Not only do all of the droplets that are in the path of the wires land on them, even droplets that were aiming for the holes in the mesh get pulled toward the wires. This system can thus capture a much larger fraction of the droplets passing through. As such, it could dramatically improve the efficiency of fog-catching systems, and at a surprisingly low cost. The equipment is simple, and the amount of power required is minimal.

Next, the team focused on capturing water from the plumes of power plant cooling towers. There, the stream of water vapor is much more concentrated than any naturally occurring fog, and that makes the system even more efficient. And since capturing evaporated water is in itself a distillation process, the water captured is pure, even if the cooling water is salty or contaminated. At this point, Karim Khalil, another graduate student from Varanasi's lab joined the team.

"It's distilled water, which is of higher quality, that's now just wasted," says Varanasi. "That's what we're trying to capture." The water could be piped to a city's drinking water system, or used in processes that require pure water, such as in a power plant's boilers, as opposed to being used in its cooling system where water quality doesn't matter much.

A typical 600-megawatt power plant, Varanasi says, could capture 150 million gallons of water a year, representing a value of millions of dollars. This represents about 20 to 30 percent of the water lost from cooling towers. With further refinements, the system may be able to capture even more of the output, he says.

What's more, since power plants are already in place along many arid coastlines, and many of them are cooled with seawater, this provides a very simple way to provide water desalination services at a tiny fraction of the cost of building a standalone desalination plant.

Damak and Varanasi estimate that the installation cost of such a conversion would be about one-third that of a building a new desalination plant, and its operating costs would be about 1/50. The payback time for installing such a system would be about two years, Varanasi says, and it would have essentially no environmental footprint, adding nothing to that of the original plant.

"This can be a great solution to address the global water crisis," Varanasi says. "It could offset the need for about 70 percent of new desalination plant installations in the next decade."

In a series of dramatic proof-of-concept experiments, Damak, Khalil, and Varanasi demonstrated the concept by building a small lab version of a stack emitting a plume of water droplets, similar to those seen on actual power plant cooling towers, and placed their ion beam and mesh screen on it. In video of the experiment, a thick plume of fog droplets is seen rising from the device - and almost instantly disappears as soon as the system is switched on.

The team is currently building a full-scale test version of their system to be placed on the cooling tower of MIT's Central Utility Plant, a natural-gas cogeneration power plant that provides most of the campus' electricity, heating, and cooling.

The setup is expected to be in place by the end of the summer and will undergo testing in the fall. The tests will include trying different variations of the mesh and its supporting structure, Damak says.

That should provide the needed evidence to enable power plant operators, who tend to be conservative in their technology choices, to adopt the system. Because power plants have decades-long operating lifetimes, their operators tend to "be very risk-averse" and want to know "has this been done somewhere else?" Varanasi says.

The campus power plant tests will not only "de-risk" the technology, but will also help the MIT campus improve its water footprint, he says. "This can have a high impact on water use on campus."

Research paper


Related Links
Massachusetts Institute of Technology
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
The Cambodian village on stilts
Siem Reap, Cambodia (AFP) June 5, 2018
Each monsoon the soaring stilts that hold up the houses of Kampong Phluk prove their worth, as the dusty Cambodian village is transformed into a deep waterway. The village, a short tuk-tuk ride from the ancient Angkor ruins, is on the floodplain of Southeast Asia's largest freshwater lake, Tonle Sap. The lake swells between the dry and wet seasons, expanding from covering an area of 2,500 square kilometres to several times that size at the height of the monsoon rains in September and October. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Merkel open to EU migration reform, Spain takes in stranded migrant ship

Puerto Rico morgue overflowing with unclaimed bodies

First public forecasts from ViEWS, a political violence early-warning system

$3bn pledged for girls education at G7, delighting Malala

WATER WORLD
Cooling by laser beam

New 3D printer can create complex biological tissues

Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

WATER WORLD
Study on economics of fishing on the high seas

Study reveals missing drivers of ocean deoxygenation

High seas fishing would go broke without 'massive' subsidies: study

Coral tricks for adapting to ocean acidification

WATER WORLD
Long thought silent because of ice, study shows east Antarctica seismically active

Ancient Greenland was much warmer than previously thought

Phosphorus nutrition can hasten plant and microbe growth in arid, high elevation sites

Trump administration moves to lift ban on bear baiting in Alaska

WATER WORLD
Dogs can detect agricultural diseases early

On the origins of agriculture, researchers uncover new clues

Five things to know about the Bayer-Monsanto megadeal

French beekeepers accuse Bayer after glyphosate found in honey

WATER WORLD
For relatives of Guatemala volcano victims, an agonizing wait

Storm-battered Dominica braces for new hurricane season

Scientists find pre-earthquake activity in central Alaska

Grim search in the rubble at Guatemala's empty Ground Zero

WATER WORLD
US commando killed, four wounded in Somalia attack

US says strike kills 27 Shabaab militants in Horn of Africa

New perspectives on African migration

Violence shuts Africa's Virunga gorilla park till 2019

WATER WORLD
Monkeys eat fats and carbs to keep warm

Bonobos won't eat filthy food, offering clues to the origins of disgust

Easter Islanders used ropes, ramps to place hats on famed statues

This monkey can plan out their foraging routes just like a human









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.