. Earth Science News .
CLIMATE SCIENCE
Offsetting climate change's effects
by Staff Writers
Boston MA (SPX) Mar 01, 2016


Using 14 sites that represented a variety of climates, Koen Hufkens ran the model against a metric of image green-ness to ensure it could reproduce results in line with the real-world observations.

Grasslands across North America will face higher summer temperatures and widespread drought by the end of the century, according to a new Harvard study on the effects of climate change. But those negative effects will be largely offset, the study predicts, by an earlier start to the spring growing season and warmer winter temperatures

Led by Koen Hufkens, a post-doctoral fellow working in the lab of Associate Professor of Organismic and Evolutionary Biology Andrew Richardson, a team of researchers developed a highly detailed model that allows researchers to predict how grasslands from Canada to Mexico will react to climate change. The model is described in a February 29 paper published in Nature Climate Change.

"(Overall what happens is) the growing season get split into two parts," Hufkens said. "You have an earlier spring flush of vegetation, followed by a summer depression where the vegetation withers, and then at the end of the season, you see the vegetation rebound again."

"The good news is that total grassland productivity is not going to decline, at least for most of the region," Richardson added. "But the bad news is that we're going to have this new seasonality that is outside of current practices for rangeland management, and how to adapt to that is unknown."

To understand the effects of climate change on grasslands, Hufkens and colleagues created a model of both the hydrology and vegetation of the region, then "trained" it using present-day data gathered from the PhenoCam Network, a collection of some 250 Internet-connected cameras that capture images of local vegetation conditions and green-ness every half hour.

Using 14 sites that represented a variety of climates, Hufkens ran the model against a metric of image green-ness to ensure it could reproduce results in line with the real-world observations.

"These were sites from across North America, from Canada to New Mexico and from California to Illinois," Richardson said. "We were using the green-ness of the vegetation as a proxy for the activity of that vegetation. We were then able to run the model into the future at a fine spatial and temporal scale."

That spatial scale - the region was divided into thousands of 10 square-kilometer blocks - allowed researchers to spot important regional differences in the response to climate change.

"That allows us to look at how patterns emerge in different areas," Hufkens said. "We can say where it happens and when it happens. Other studies - roughly predict similar trends, but the intricate spatial and temporal details, which can have implications for the appropriate management response, are often lacking."

Importantly, Richardson said, the model also works at a very fine temporal scale - using a daily time step rather than monthly.

"Grasslands are different from forests in that they respond very quickly to moisture pulses," he said. "Koen's model takes advantage of that - by running the model at a daily time scale it can better represent those patterns."

The model's results could present large challenges for those - like farmers and ranchers - who rely on predictable seasonal changes to manage the landscape. "These shifting seasons will present new tests for management practices," Richardson cautioned.

"In higher elevation grassland... they're going to benefit because they will see more production, but low-lying grasslands, they will have to think carefully about the costs and benefits," Richardson said.

For southern grasslands, meanwhile, the increases in production and the losses due to higher summer temperatures largely balance out while increasing the variability within the growing season, Hufkens said, meaning ranchers could face large challenges.

Though the results suggest climate change may have some positive effects, both Hufkens and Richardson warned that they are the result of a highly delicate balance.

"One message here is simply that the effects of climate change may be somewhat counter-intuitive," Richardson said.

"It's getting more arid and that's causing more intense summer droughts, but because of a changing seasonality, vegetation growth is shifting, and those negative effects of drought on ecosystem production can be offset. But that then raises these new questions about appropriate management responses. Relying on this increase in productivity, or expecting that climate change will have long-term benefits because of results like this, is like playing the lottery - the odds are not very good."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard University
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLIMATE SCIENCE
Dartmouth-led team develops method to predict local climate change
Hanover NH (SPX) Feb 23, 2016
Global climate models are essential for climate prediction and assessing the impacts of climate change across large areas, but a Dartmouth College-led team has developed a new method to project future climate scenarios at the local level. The method can be used in any mountainous or hilly area with a reasonable number of weather stations measuring temperature and precipitation. The finding ... read more


CLIMATE SCIENCE
Aid finally getting to Fiji cyclone victims

Nuclear water: Fukushima still faces contamination crisis

Screening truffles for radioactivity 30 years from Chernobyl

MH370 lawsuits gain pace as two-year deadline nears

CLIMATE SCIENCE
Eco-friendly food packaging material doubles shelf-life of food products

Virtual reality is next as smartphone sales slow

Crystal and magnetic structure of multiferroic hexagonal manganite

Mystery of Dracula orchids' mimicry is unraveled with a 3-D printer

CLIMATE SCIENCE
Water-cleaning chemical made 'on-demand' with new group of catalysts

New prediction tool gives warning of rogue waves

Climate change speeds up gully erosion

Herring fishery's strength is in the sum of its parts, study finds

CLIMATE SCIENCE
OGC requests information to guide Arctic Spatial Data Pilot

Australian icebreaker refloated in Antarctica after grounding

Australian icebreaker runs aground in Antarctica

Study of tundra soil demonstrates vulnerability of ecosystem to climate warming

CLIMATE SCIENCE
China's Jack Ma buys French vineyard

Decline of bees, other pollinators, threatens crop output: UN body

Mining to dining: Australia becomes China's land of milk and honey

New wheat genetic advancements aimed at yield enhancement

CLIMATE SCIENCE
Fiji eyes more cyclone aid as toll hits 44

Fiji cyclone death toll rises to 42: official

Cyclone death toll hits 29 as Fiji eyes long clean-up

Christchurch commemorates devastating quake

CLIMATE SCIENCE
Voice of China: Beijing seeks African friends and influence

Kenya army says it killed Shebab intelligence chief

Three soldiers get life for I.Coast military chief's murder

Saving the wildlife 'miracle' of Congo's Garamba park

CLIMATE SCIENCE
Easter Island not destroyed by war, analysis of 'spear points' shows

Neanderthals and modern H. sapiens crossbred over 100,000 years ago

Neanderthals mated with modern humans much earlier than previously thought

Modern 'Indiana Jones' on mission to save antiquities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.