. Earth Science News .
Old Growth Giants Limited By Water-Pulling Ability

Trees of that height were discovered in Washington and British Columbia in the late 19th and early 20th centuries. The tallest Douglas-fir today is a 326-foot-tall tree in Coos County, Oregon.
by Staff Writers
Corvallis OR (SPX) Aug 14, 2008
The Douglas-fir, state tree of Oregon, towering king of old-growth forests and one of the tallest tree species on Earth, finally stops growing taller because it just can't pull water any higher, a new study concludes.

This limit on height is somewhere above 350 feet, or taller than a 35-story building, and is a physiological tradeoff between two factors in the tree's wood - a balance between efficiency and safety in transporting water to the uppermost leaves.

The findings are being published this week in Proceedings of the National Academy of Sciences, by a team of scientists from Oregon State University and the U.S.D.A. Forest Service. The research was funded by grants from the U.S. Department of Agriculture and the Forest Service.

"People have always been fascinated by how some trees, such as Douglas-fir or redwoods, can grow so tall," said Barb Lachenbruch, a professor of wood science at Oregon State University. "This is not an easy thing to do. Think about trying to drink water through a narrow, 350-foot-long straw. It takes a lot of suction."

Douglas-fir wood consists mostly of dead cells called "tracheids" that function in water transport and physical support, the researchers said. These tracheids have pits on their sides that function as valves, allowing water to go from one tracheid to the next, and the pits have a membrane with an impermeable middle.

Normally, water flows through the porous edges of the membrane, but if there's an air bubble in one tracheid, the membrane moves to the side and blocks off the pit so air bubbles can't spread.

Although it's important to allow water to pass efficiently from one wood cell to the next, air bubbles would block water movement altogether. Because water is pulled through a tree by the forces of evaporation from the leaf surfaces, the water is in "tension," like a pulled rubber band. If an air bubble gets in, it's like the rubber band breaking and water can no longer be transported.

With a 350-foot-long water column, there's a lot of tension on the water in the cells at the top of the tree, and a lot of force trying to get errant air bubbles to enter.

"Higher and higher in the tree, the valves are able to withstand more pulling force from the long heavy column of water before air bubbles can be sucked through," Lachenbruch said. "But the problem is that the valves become less efficient at letting water pass. The height at which no water would pass at all, according to our models, coincides the tallest records for Douglas-fir, about 350 to 400 feet."

Trees of that height were discovered in Washington and British Columbia in the late 19th and early 20th centuries. The tallest Douglas-fir today is a 326-foot-tall tree in Coos County, Oregon.

"As you go higher and higher in a Douglas-fir tree, it's almost like experiencing a drought," said Rick Meinzer, a Forest Service scientist at the Pacific Northwest Research Station. "And that's what we see at the tops of very tall trees. The foliage is struggling to get enough water and seems to be under drought stress. It's not unusual to see periodic die-back at the tops of very tall Douglas-fir trees that are near their height limits."

At a specific height determined by the physical structure of these pits and their membranes, the scientists discovered, the fierce resistance put up by the Douglas-fir to prevent any spread of air bubbles also prevents water from being pulled any higher. That is where it finally stops growing in height, no matter how favorable any other conditions might be, such as climate, soil or water availability.

The studies, Meinzer said, may improve our understanding of how trees grow in height and may be able to adapt to different environments, including their ability to deal with droughts or climate change.

Although height can be important in a competition for sunlight and photosynthesis, natural selection has not favored a wood structure in Douglas-fir that facilitates water transport at even greater tensions and allows for greater height, the scientists noted in their study.

Apparently 350 feet is tall enough.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Oregon State University
Forestry News - Global and Local News, Science and Application



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Climate Change Caused Widespread Tree Death In California Mountain Range
Irvine CA (SPX) Aug 13, 2008
Warmer temperatures and longer dry spells have killed thousands of trees and shrubs in a Southern California mountain range, pushing the plants' habitat an average of 213 feet up the mountain over the past 30 years, a UC Irvine study has determined.







  • Teacher sent to labour camp for China quake photos
  • Over 600,000 evacuated as tropical storm hits China: reports
  • China insurers expect 1.5 bln dlrs in snow, quake claims: officials
  • Japanese say careful preparations saved them from quake

  • Thousands rally to mark 'death' of Australian river
  • Purdue Researcher Identifies Climate Change Hotspots
  • Carbon Disclosure Project Helps US Cities Understand Local Climate
  • Southern Ocean Seals Dive Deep For Climate Data

  • ESA Meets Increasing Demand For Earth Observation Data
  • Tropical Storm Edouard Steams Toward Texas And Louisiana
  • Global Air Quality Checks Delivered Hourly From Space
  • Space Technology Offers Surprising Solution To Oil Spills

  • ACCIONA Launches 180 MW Tatanka Wind Farm
  • Air Products' Mobile Hydrogen Fueler Technology Supports Hydrogen Tour '08
  • Johnson Controls To Improve Energy Usage At Oak Ridge National Labs
  • Walker's World: $200 oil is coming

  • War on AIDS: Money nightmare seems set to return
  • UN target of 2010 will not be reached by all: AIDS leaders
  • Former Soviet states at AIDS tipping point: experts
  • Back to basics in search for HIV vaccine, conference told

  • Prehistoric giant kangaroos killed by man, not climate, study says
  • A Swift Drop Into Deep Freeze
  • Humans Involved In Prehistoric Animal Extinctions
  • Microbes, By Latitudes And Altitudes, Shed New Light On Life's Diversity

  • Strange Molecule In The Sky Cleans Acid Rain
  • Papuan tribal chief takes on US mining giant: report
  • Scientists To Assess Beijing Olympics Air Pollution Control Efforts
  • Indonesia warns over forest fires on Borneo

  • CSHL Neuroscientists Glimpse How The Brain Decides What To Believe
  • Large Reservoir Of Mitochondrial DNA Mutations Identified In Humans
  • Humans' Evolutionary Response To Risk Can Be Unnecessarily Dangerous
  • Genetic Variations In European Americans

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement