. | . |
Ozone and haze pollution weakens land carbon uptake in China by Staff Writers Beijing, China (SPX) May 19, 2017
Toxic air pollution is a serious side effect of the rapid economic development in China. While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. Ozone reduces plant photosynthesis directly through stomatal uptake. Atmospheric aerosols often benefit plant photosynthesis through perturbations to radiation, meteorology, and cloud. Recently, a study led by Dr. YUE Xu from CAS Institute of Atmospheric Physics provides the first systematic assessment of the effects of ozone and aerosol haze pollution on terrestrial ecosystem health and land carbon assimilation in China, for the present day and two possible future scenarios. The calculations have been performed using state-of-the-science Earth system modeling that facilitates coupled simulation of the land biosphere, atmospheric chemistry, aerosol, and meteorology components, allowing the coherent treatment of interactions and feedbacks. Results show that surface ozone and anthropogenic aerosol haze pollution in China together decrease the regional net primary productivity (NPP) by 0.4-0.8 petagrams of carbon (Pg C) per year, accounting for 9-16% of the total NPP of land ecosystems and 16-32% of the total anthropogenic carbon emissions of the country. Individually, ozone inhibits annual NPP by 0.6 Pg C, with a range from 0.4 to 0.8 Pg C due to plant sensitivity to ozone damage. In contrast, aerosol direct effects enhance annual NPP by 0.2 Pg C, because of a combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. However, precipitation inhibition from aerosol indirect effects instead decrease NPP by 0.2 Pg C, leading to a combined air pollution suppression of 0.8 Pg C. "Following the current legislation emission (CLE) scenario, this suppression will not alleviate by the year 2030, mainly due to a continuing increase in surface ozone. " says YUE, "The maximum technically feasible reduction (MTFR) scenario could drastically relieve the existing level of NPP damage by 70% in 2030, offering protection of this critical ecosystem service and the mitigation of long-term global warming." This study is a timely and critical advance because of immediate political, social, and scientific concerns about China's air pollution threat to human and ecosystem health. The results show that stringent air pollution controls offer substantial co-benefits to the protection of ecosystem health and the land carbon sink. The study was selected as "highlight article" by Atmospheric Chemistry and Physics.
Hobart, Australia (SPX) May 23, 2017 The beaches of one of the world's most remote islands have been found to be polluted with the highest density of plastic debris reported anywhere on the planet, in a study published in the prestigious US scientific journal Proceedings of the National Academy of Sciences. Despite being uninhabited and located more than 5000 kilometres from the nearest major population centre, Henderson Isla ... read more Related Links Institute of Atmospheric Physics, Chinese Academy of Sciences Our Polluted World and Cleaning It Up
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |