Subscribe free to our newsletters via your
. Earth Science News .




TECTONICS
Pacific plate shrinking as it cools
by Staff Writers
Houston TX (SPX) Aug 29, 2014


A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. Image courtesy Corne Kreemer and Richard Gordon. For a larger version of this image please go here.

The tectonic plate that dominates the Pacific "Ring of Fire" is not as rigid as many scientists assume, according to researchers at Rice University and the University of Nevada.

Rice geophysicist Richard Gordon and his colleague, Corne Kreemer, an associate professor at the University of Nevada, Reno, have determined that cooling of the lithosphere - the outermost layer of Earth - makes some sections of the Pacific plate contract horizontally at faster rates than others and cause the plate to deform.

Gordon said the effect detailed this month in Geology is most pronounced in the youngest parts of the lithosphere - about 2 million years old or less - that make up some the Pacific Ocean's floor.

They predict the rate of contraction to be 10 times faster than older parts of the plate that were created about 20 million years ago and 80 times faster than very old parts of the plate that were created about 160 million years ago.

The tectonic plates that cover Earth's surface, including both land and seafloor, are in constant motion; they imperceptibly surf the viscous mantle below. Over time, the plates scrape against and collide into each other, forming mountains, trenches and other geological features.

On the local scale, these movements cover only inches per year and are hard to see. The same goes for deformations of the type described in the new paper, but when summed over an area the size of the Pacific plate, they become statistically significant, Gordon said.

The new calculations showed the Pacific plate is pulling away from the North American plate a little more - approximately 2 millimeters a year - than the rigid-plate theory would account for, he said. Overall, the plate is moving northwest about 50 millimeters a year.

"The central assumption in plate tectonics is that the plates are rigid, but the studies that my colleagues and I have been doing for the past few decades show that this central assumption is merely an approximation - that is, the plates are not rigid," Gordon said.

"Our latest contribution is to specify or predict the nature and rate of deformation over the entire Pacific plate."

The researchers already suspected cooling had a role from their observation that the 25 large and small plates that make up Earth's shell do not fit together as well as the "rigid model" assumption would have it. They also knew that lithosphere as young as 2 million years was more malleable than hardened lithosphere as old as 170 million years.

"We first showed five years ago that the rate of horizontal contraction is inversely proportional to the age of the seafloor," he said. "So it's in the youngest lithosphere (toward the east side of the Pacific plate) where you get the biggest effects."

The researchers saw hints of deformation in a metric called plate circuit closure, which describes the relative motions where at least three plates meet. If the plates were rigid, their angular velocities at the triple junction would have a sum of zero. But where the Pacific, Nazca and Cocos plates meet west of the Galapagos Islands, the nonclosure velocity is 14 millimeters a year, enough to suggest that all three plates are deforming.

"When we did our first global model in 1990, we said to ourselves that maybe when we get new data, this issue will go away," Gordon said. "But when we updated our model a few years ago, all the places that didn't have plate circuit closure 20 years ago still didn't have it."

There had to be a reason, and it began to become clear when Gordon and his colleagues looked beneath the seafloor.

"It's long been understood that the ocean floor increases in depth with age due to cooling and thermal contraction. But if something cools, it doesn't just cool in one direction. It's going to be at least approximately isotropic. It should shrink the same in all directions, not just vertically," he said.

A previous study by Gordon and former Rice graduate student Ravi Kumar calculated the effect of thermal contraction on vertical columns of oceanic lithosphere and determined its impact on the horizontal plane, but viewing the plate as a whole demanded a different approach.

"We thought about the vertically integrated properties of the lithosphere, but once we did that, we realized Earth's surface is still a two-dimensional problem," he said.

For the new study, Gordon and Kreemer started by determining how much the contractions would, on average, strain the horizontal surface. They divided the Pacific plate into a grid and calculated the strain on each of the nearly 198,000 squares based on their age, as determined by the seafloor age model published by the National Geophysical Data Center.

"That we could calculate on a laptop," Gordon said. "If we tried to do it in three dimensions, it would take a high-powered computer cluster."

The surface calculations were enough to show likely strain fields across the Pacific plate that, when summed, accounted for the deformation. As further proof, the distribution of recent earthquakes in the Pacific plate, which also relieve the strain, showed a greater number occurring in the plate's younger lithosphere.

"In the Earth, those strains are either accommodated by elastic deformation or by little earthquakes that adjust it," he said.

"The central assumption of plate tectonics assumes the plates are rigid, and this is what we make predictions from," said Gordon, who was recently honored by the American Geophysical Union for writing two papers about plate movements that are among the top 40 papers ever to appear in one of the organization's top journals. "Up until now, it's worked really well."

"The big picture is that we now have, subject to experimental and observational tests, the first realistic, quantitative estimate of how the biggest oceanic plate departs from that rigid-plate assumption."

The National Science Foundation supported the research. Gordon is the Keck Professor of Geophysics and chairman of the Earth Science Department at Rice.

.


Related Links
Rice University
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Composition of Earth's mantle revisited
Argonne IL (SPX) Aug 27, 2014
Research published last week in Science suggested that the makeup of the Earth's lower mantle, which makes up the largest part of the Earth by volume, is significantly different than previously thought. The work, performed at the Advanced Photon Source at the U.S. Department of Energy's Argonne National Laboratory, will have a significant impact on our understanding of the lower mantle, sc ... read more


TECTONICS
Japan gov't calls on citizens to stockpile toilet paper

Fukushima workers to sue TEPCO for danger pay

Macedonia detains 100 Syrian, Iraqi immigrants

New Zealand police investigate quake building failure

TECTONICS
Photon speedway puts big data in the fast lane

New EIAST Primary Sat Fab Facilities Ready Soon

Russia to develop scavenger to collect cosmic debris by 2025

Laser makes microscopes way cooler

TECTONICS
Sierra Nevada freshwater runoff could drop 26 percent by 2100

Nature's tiny engineers

Panasonic, Tata join hands in water treatment: report

Great Barrier Reef dredge dumping plan could be shelved

TECTONICS
Antarctic sea-level rising faster than global rate

US expedition yields first breakthrough paper about life under Antarctic ice

Sunlight, not microbes, key to CO2 in Arctic

Arctic sea ice influenced force of the Gulf Stream

TECTONICS
Water 'thermostat' could help engineer drought-resistant crops

New study charts the global invasion of crop pests

How to prevent organic food fraud

Locust plague descends on Madagascar capital

TECTONICS
Yellowstone supereruption would send ash across North America

Likely near-simultaneous earthquakes complicate seismic hazard planning for Italy

Dramatic Papua New Guinea volcano quietens

Experts defend operational earthquake forecasting, counter critiques

TECTONICS
'SwaziLeaks' looks to shake up jet-setting monarchy

US forces conduct operation in Somalia: Pentagon

Nigeria launches national identity card scheme

China's Xi hails Mugabe as renowned leader, old friend

TECTONICS
DNA shows Arctic group's isolation lasted 4,000 years

The roots of human altruism

Stone-tipped spears lethal, may indicate early cognitive and social skills

SA's Taung Child's skull and brain not human-like in expansion




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.