. Earth Science News .
CLIMATE SCIENCE
Polar Oceans Key To Temperature In The Tropics

The cooling and expansion of polar waters between 1.8 and 1.2 million years ago increased the temperature difference between the equator and the poles. This intensified atmospheric circulation and helped to develop the modern day 'cold tongue' in the east Pacific.
by Staff Writers
Newcastle, UK (SPX) Jun 23, 2010
Scientists have found that the ocean temperature at the earth's polar extremes has a significant impact thousands of miles away at the equator.

Newcastle University's Dr Erin McClymont is part of an international team of researchers who have published research in Science, demonstrating a close link between the changes in the subpolar climate and the development of the modern tropical Pacific climate around two million years ago.

The team believes this solves another piece of the puzzle concerning oceanic behaviour and its influence on climate.

This research, led by the Institut de Ciencia i Tecnologia Ambientals in Barcelona, studied the Northern Pacific and Southern Atlantic sea-surface temperatures from the Pliocene Era (3.65 million years ago) to the present day. Data obtained during the reconstruction indicates that the regions close to the poles of both oceans have played a fundamental role in the way the tropical climate has evolved.

The cooling and expansion of polar waters between 1.8 and 1.2 million years ago increased the temperature difference between the equator and the poles. This intensified atmospheric circulation and helped to develop the modern day 'cold tongue' in the east Pacific.

Created by a shallow thermocline - the layer of ocean water in which temperatures fall rapidly - the cold tongue brings cold, deep waters to the surface in the east tropical Pacific. Under the warmer climate of the Pliocene, the thermocline was deeper and the cold tongue was much smaller, creating a situation more like the 'El Nino' events that hit the Pacific every three to five years.

"Our results show that the polar oceans play a key role in the global climate, and that one outcome of a rise in global temperature could be an increase in the depth of the thermocline and contraction of the cold tongue in the eastern Pacific," said Dr McClymont. "The high-latitudes are currently experiencing large climate changes, and our data show that this could impact on tropical climates as we saw in the Pliocene."

The study of Pliocene climate has been the subject of intense research as this era represents the most recent climatic period in the Earth's history when average temperatures were significantly higher than today over a sustained period. As a result, the Pliocene is thought to be the closest predictor of the Earth's climate in the future.

How it works: Analysing deep sea 'fossils'
Researchers analysed marine sediment collected by the international Integrated Ocean Drilling Program, which is supported in the UK by the Natural Environment Research Council (NERC). Sediment cores were drilled in water depths exceeding 3km to measure the composition of alkenones - highly resistant organic compounds produced by phytoplankton.

The phytoplankton live in the surface ocean and change their alkenone chemistry in response to temperature changes. The researchers used these 'biomarkers' or 'chemical fossils' to reconstruct the temperatures of the surface ocean.

"These molecules are 'fossils' in the same way that shells or fish fall to the bottom of the ocean and are preserved," said Dr McClymont, who is a member of the Quaternary Research Group within Newcastle University's School of Geography, Politics and Sociology. "Molecules which remained from the phytoplankton were gradually buried beneath layers of sediment beneath the ocean floor, and by analysing these we were able to reconstruct the temperatures of the surface ocean in the past."

Reconstruction of the surface temperature in the Northern Pacific and Southern Atlantic has enabled a simultaneous sea-surface cooling to be identified in the subpolar regions of the two hemispheres in the period between 1.8 and 1.2 million years ago. This finding coincides with the formation of the equatorial Pacific cold tongue-which currently almost disappears during any El Nino conditions.

Previous studies have shown that, during the warm conditions of the Pliocene, this cold tongue was not present, creating a situation similar to a permanent El Nino situation in the equatorial Pacific.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Newcastle University
Universitat Autonoma de Barcelona
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CLIMATE SCIENCE
Obama delays meeting on climate, energy
Washington (AFP) June 22, 2010
President Barack Obama indefinitely postponed meetings that were set for Wednesday with lawmakers from both parties on efforts to pass a climate change and energy bill. A White House meeting with Republican and Democratic senators, scheduled for early Wednesday, had been aimed at settling a dispute over how to deal with greenhouse gas emissions in the legislation. But late Tuesday the Wh ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement