. | . |
Radar Engineers Aid Largest National Tornado Study
Amherst MA (SPX) May 04, 2009 As part of the largest, most ambitious attempt ever launched to figure out how tornadoes form and how to predict them more accurately, engineers from the University of Massachusetts Amherst this week are readying two special mobile Doppler radar systems for deployment to the Great Plains. The national project known as Verification of the Origins of Rotation in Tornadoes Experiment 2, or VORTEX2, will enlist more than 50 scientists and 10 mobile radars to sample the wind, temperature and moisture environments in tornado-spawning storms in greater detail than before. One of the UMass Amherst units brings the highest spatial resolution of any mobile Doppler radar in the nation to address the study goals. From early May to mid-June when these severe storms are most common, the $11.9 million project will look at events that have long been hidden behind rain and hail within supercell thunderstorms. With other specialists converging on one of the nation's "tornado alleys," the UMass Amherst group will use truck-mounted Doppler radars they've developed to "see" inside the violent storms at ground level, offering one of the most precise radars ever used for tornado detection, far more precise than those mounted on high towers or on satellites. Electrical and computer engineering professor Stephen Frasier, director of the Microwave Remote Sensing Laboratory (MIRSL), leads the group of research engineer Pei-Sang Tsai and two graduate students taking part this spring. With any luck, they'll capture data from a handful of actual tornadoes as they form, to help meteorologists understand tornado origin, structure and evolution. Another overall VORTEX2 goal is to build a complete observation network around and under a supercell storm. It has been only in the past 15 years that results from the first VORTEX study in 1994-1995 allowed scientists to document the entire life-cycle of a tornado for the first time in history, according to the National Oceanic and Atmospheric Administration (NOAA). An important finding from that original experiment, according to an NSF program director, is that the factors responsible for causing tornadoes happen on smaller time and space scales than scientists had thought. An exciting aspect of VORTEX2 is that to work most effectively some of the radars including one of the UMass Amherst rigs must be deployed quite close, within a mile or two, of tornadoes embedded in monster storms that can be 50 miles wide. Peril is reduced by approaching storms from the side, says Tsai, and overall "it's not that dangerous because we know when to run. We keep the engine running in case the storm suddenly turns toward us," she adds. Tsai and Frasier explain that the two UMass Amherst Doppler radars send different signals into a storm, reflecting off water droplets or debris and returning data at either a fine or more coarse resolution. For example, the high-frequency 95 GHz W-band radar provides "the highest spatial resolution of all existing mobile Doppler radars," Frasier notes. It can be very narrowly focused "because tornadoes are relatively small targets." Also, W-band radar can better image internal tornado structures. For best results, mobile W-band radar should be deployed quite close to a storm but not directly in its path, a mile or two to the side. Inside the truck, the engineer uses the radar to measure wind speed, density of raindrops, wind shear and other variables, Tsai adds. Frasier says this radar is critical to VORTEX2 because "it provides the best possible opportunity to map the wind field at the lowest levels of tornadoes. It also has the best chance to document the structure of multiple, sub-tornado-scale vortices, which are thought to cause much of the localized, extreme damage in some tornadoes." The other MIRSL truck, meanwhile, beams a 9.5 GHz signal known as X-band polarimetric radar at thunderheads from many miles away, to see the whole storm at once. This radar can better penetrate rain, providing information on the location and density of hail, rain and debris inside a storm, which is "essential to separate rain from debris," says Frasier. Wind data from the X-band radar "will also be used in conjunction with data from the other X-band radars in the field to do multiple-Doppler analysis." The two graduate students on the UMass Amherst team this season are Vijay Venkatesh and Krzysztof Orzel and this trip will be Orzel's first. "I'm really excited about VORTEX2 and I can't wait 'til we leave," he says, "but it's also busy. We have a great number of tiny details to attend to, to prepare for the expedition." For Venkatesh, VORTEX2 will be his second tornado study experience. He knows it means spending 15 hours a day driving hundreds of miles toward promising storm cells. "We usually pack two to three meals because it gets too intense to stop for a meal once the chase begins," he says. "A team of radars leaves around noon and we drive until we reach our target region. We watch the weather events unfold, collect data with our radars, and are back around 2 or 3 a.m. to catch some sleep." He adds, "On one hand, it is good for our research if we see a tornado. On the other hand, I was at Greensburg, Kansas, a year after the EF-5 storm wrecked their town. There was a severe storm watch in the area at the time, and you could see the concern on the faces of the local folks. It was natural for us to hope we didn't see anything that day." VORTEX2 is supported by NOAA, the National Science Foundation, 10 universities and three nonprofits in 2009-2010, to provide forecasters with more tools to improve tornado warning times and short-term severe weather alerts. Share This Article With Planet Earth
Related Links University of Massachusetts Amherst Bringing Order To A World Of Disasters When the Earth Quakes A world of storm and tempest
Hispaniola Was A Tropical Cyclone Target Five Times In 2008 Greenbelt MD (SPX) Apr 17, 2009 In 2008, residents of Hispaniola experienced one of their worst hurricane seasons in recent memory. Hispaniola, the Caribbean island containing Haiti and the Dominican Republic, is located directly within the hurricane belt, and was pummeled by five tropical cyclones last year: Fay, Gustav, Hanna, Ike, and low over the Dominican Republic on Sept. 24 what would become Kyle after moving north. More than 800 people were reported dead or missing from these storms. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |