. Earth Science News .
EARLY EARTH
Recreating ancient vertebrate's first step on dry land
by Staff Writers
Washington DC (SPX) Jul 12, 2016


Image shows the 'MuddyBot' robot that uses the locomotion principles of the mudskipper to move through a trackway filled with granular materials. The robot has two limbs and a powerful tail, with motion provided by electric motors. Image courtesy Rob Felt, Georgia Tech.

Could a tail have allowed ancient vertebrates to make the transition from water to land? Reporting in Science today, researchers from Georgia Institute of Technology, Carnegie Mellon University, Clemson University and National Institute for Mathematical and Biological Synthesis described results of a groundbreaking study to answer this question using amphibious fish, a custom-built robot and mathematical models of movement.

The study tested the hypothesis that coordinated tail movement played an important role in evolution of terrestrial vertebrates. The researchers found that, for the first critical step out of an aqueous environment and onto a riverbank or mudflat, stabilizing the body with a tail provided substantial benefits.

The effort, supported by the National Science Foundation (NSF), the Army Research Office and the Army Research Laboratory, brought together experts in physics, biology, robotics and mathematics who explored the question through a variety of experimental methods.

Daniel Goldman, an associate professor in the Georgia Tech School of Physics and the principal investigator on the NSF award that supported the work, says he has long been obsessed with the question of how the first creatures moved onto land.

"I was interested in evolutionary biology from a natural history perspective: imagining the grand scope of life on Earth and trying to understand how animals lived hundreds of millions of years ago and in this case, trying to understand how major transitions in behavior happened." Goldman says. "For me this has been a nice integration of my interests applied to a question which I just think is fascinating: what did the earliest animals do when they were trying to crawl around on land?"

To answer the question, he and his collaborators took a three-pronged approach.

First, they explored the behavior and body mechanics of the African mudskipper - an amphibious fish that lives in tidal areas near shore and uses its front fins and tail to move on land with a "crutching" motion. The mudskipper is one of a handful of living organisms considered to be potentially close in body structure to the first terrestrial vertebrates.

In co-author Richard Blob's lab at Clemson University, researchers recorded the movements of mudskippers in an environment akin to riverbanks where early land-dwellers may have emerged to see how they behaved.

"We found when mudskippers are using their tail on a sufficiently inclined sandy slope they do pretty well and when they don't, they don't do well," Goldman concluded.

Next, the researchers developed a simplified, mudskipper-like version of a robot, which they call "MuddyBot," on which they could systematically vary the angle and movements of the robot's flipper-like limbs and tail. They used MuddyBot to find out which coordinated motions of limb and tail were most effective on granular surfaces of different inclines. They call this approach "robophysics" - a novel way to understanding the behavior of long-lost species.

Finally, they used a mathematical and engineering method called "geometric mechanics" (developed in the 1980s by physicist and Nobel Prize winner Frank Wilczek and his student Alfred Shapere) to analyze all the possible ways the MuddyBot can move in space and on different surfaces.

This helps determine what types of movement may or may not have allowed the creature to pull itself up onto a sandy or muddy slope. This process also involved developing a better understanding of the physics of sand and the way that a granular medium can compress or slip when something tries to move on it.

The variety of approaches provided the teams with quantitative evidence to support the idea that the first locomotors may have had tails and may have used a crutching motion to move out of the water.

"Insight from these experiments led us to hypothesize that propulsive use of the tail, an appendage that has received relatively little attention in previous studies of the invasion of land, may have been the critical adaptation that allowed these early walkers to gain ground on challenging substrates," says Benjamin McInroe, a co-author on the paper and then an Georgia Tech undergraduate (now a Ph.D. student at the University of California, Berkeley) who analyzed the mudskipper data provided by the Clemson team.

"Professor Goldman and his collaborators are combining physics and engineering prototyping approaches to understand the physical principles that allow animals to move in different environments," says Krastan Blagoev, program director in the NSF Division of Physics. "This novel approach to living organisms promises to bring to biological sciences higher predictive power and at the same time uncover engineering principles that we have never imagined before."

The team's well-documented and analytic-rich findings only chart the critical first step out of the aqueous environment and not the full progression up a riverbank and onto level ground. After that first step, things get even more complicated because sand flows in a way that scientists don't yet have the physics to describe.

"Even this ridiculously seemingly simple little crutching motion with coordinated tail use confronts our ignorance in three or four different disciplines: biology, paleontology, robotics, and mathematics," says Goldman. "That's a summary of how far away we are from really understanding it."

Instead of being discouraged by this fact, the realization motivates Goldman.

"That's the great joy in all this," he says. "Just looking at these simple problems, there's a huge amount of insight to be had from applying new tools."

The research provides a rigorous approach to studying evolutionary questions in the future by combining animal, robotic and mathematical approaches. It even may improve designs for robots that can move on sand or loose dirt and help in search and rescue missions - a focus of Howie Choset's work at Carnegie Mellon University.

"Our computer modeling tools allow us to visualize, and therefore better understand, how the mudskipper incorporates its tail and flipper motions to locomote," says Howie Choset, a professor in the Robotics Institute at Carnegie Mellon University. "This work also will advance robotics in those cases where a robot needs to surmount challenging terrains with various inclinations."

It is impossible to say for sure yet if the earliest locomotors used a crutching behavior like the mudskipper, Goldman says. For that reason, the team is now making robots to test some alternative possibilities, including robots with bodies like salamanders that move with a diagonal gait.

"It really is exciting to imagine that some of these models that we're cooking up in the lab in these relatively simple robots could have anything to say about something that happened 360 million years ago," he says, "and to be able to demonstrate that these questions, which seem so simple on first blush, actually require deep insights into the fundamentals of all sorts of disciplines including physics, biology and robotics."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Science Foundation
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Study: Dinosuars may have been cooers and mumblers, not roarers
Austin, Texas (UPI) Jul 11, 2016
New research suggests closed-mouth sounds made by modern birds may be analogous to dinosaur vocalization. Dinos might have been tight-lipped cooers and mumblers, not ferocious open-mouthed roarers as they're often depicted in film. The primary purpose of the new research was to document an oft-ignored avian vocalization method. Because birds are descendants of dinosaurs, the rese ... read more


EARLY EARTH
A new way to detect hidden damage in bridges, roads

Friend or foe? Texas open-carry gun law under scrutiny

Natural catastrophe losses up sharply in first half 2016: Munich Re

Nepal selling rice donated for quake victims

EARLY EARTH
Russian Scientists Propose Charging Satellites Using Land-Based Lasers

Japan satellite made 'surprise' find before failure

Setting a satellite to catch a satellite

India May Buy Russian Microcircuits for Its Space Program

EARLY EARTH
China has 'no historic rights' in South China Sea: tribunal

After decades of clean up attempts, world's lakes still suffer from phosphorus pollution

Experts listen in on noisy Falmouth seas

Beavers may restore imperiled streams, fish populations

EARLY EARTH
NASA's Field Campaign Investigates Arctic North American Ecosystems

Expanding Antarctic sea ice linked to natural variability

King penguins keep an ear out for predators

Vegetation in Russian Arctic has memory

EARLY EARTH
EU limits glyphosate use during 18-month extension

ChemChina extends $43 bn offer for agri-giant Syngenta

A culinary expedition with Peru's intrepid top chef

Feeding the world by rewiring plant mouths

EARLY EARTH
California ill-prepared for the Big One, experts say

Strong 6.3 magnitude earthquake shakes Ecuador: USGS

Tropical storm kills 10 in China, 11 missing

Understanding tsunamis with EM fields

EARLY EARTH
Low uptake of space technology science slows Africa's growth: experts

Rwanda hikes import duties on secondhand clothes

Nigeria's ex-air force chief charged with money laundering

Why are UN forces returning control of security to Liberia?

EARLY EARTH
Archaeology suggests no direct link between climate change and early human innovation

Monkeys know what they don't know

The history of human genetic ancestry in Madagascar

Ancient Brazilians occupied the same houses for centuries









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.