Subscribe free to our newsletters via your
. Earth Science News .




WOOD PILE
Reforestation study shows trade-offs between water, carbon and timber
by Staff Writers
Tempe AZ (SPX) May 27, 2013


Gatun Lake and the Panama Canal.

More than 13,000 ships per year, carrying more than 284 million tons of cargo, transit the Panama Canal each year, generating roughly $1.8 billion dollars in toll fees for the Panama Canal Authority. Each time a ship passes through, more than 55 million gallons of water are used from Gatun Lake, which is also a source of water for the 2 million people living in the isthmus.

However, the advent of very large "super" cargo ships, now more than 20 percent of the ships at sea, has demanded change. The Panama Canal is being expanded to create channels and locks three times larger than at present, leaving the authority to consider how best to meet the increased demand for water. One proposed measure is the reforestation of the watershed.

To help planners and policy makers understand the effects of reforestation, ASU scientists Silvio Simonit and Charles Perrings studied the effects of reforestation on a 'bundle' of ecosystem services: dry-season water flows, carbon sequestration, timber and livestock production.

Published this week in Proceedings of the National Academy of Sciences (PNAS), their study - "Bundling ecosystem services in the Panama Canal Watershed" - examines precipitation, topography, vegetation, and soil characteristics to model on-site and off-site effects of several reforestation options.

"The Panama Canal watershed is currently being reforested to protect the dry-season flows needed for canal operations. We find however that reforestation does not necessarily increase water supply, but does increase carbon sequestration and timber production," said Simonit.

"Our research provides an insight into the importance of understanding the spatial distribution of the costs and benefits of jointly produced services." Simonit, a member of ASU's Ecoservices Group co-directed by Perrings, is part of a collaborative research partnership between ASU and the Smithsonian Tropical Research Institute (STRI). He is also a post-doctoral fellow on the National Science Foundation-funded research coordination network: Biodiversity and Ecosystem Services Training Network (BESTNet).

Simonit and Perrings found that only 37 percent of the currently forested area positively impacts dry-season water flows, offering up roughly 37.2 million cubic meters of seasonal flow (equivalent to US $16.37 million in revenue to the Panama Canal Authority).

In parts of the watershed not currently under forest, they found that reforestation of areas with high precipitation rates, flat terrain, and soil types with high potential infiltration would enhance dry-season flows. However, they note that these conditions exist in less than 5 percent of watershed not currently under forest.

"Water supply is, however, only one amongst many ecosystem services affected by reforestation of the watershed," said Perrings, a professor in the School of Life Sciences in ASU's College of Liberal Arts and Sciences. "And the balance between services depends on the type of reforestation undertaken." Accordingly, the duo investigated two reforestation scenarios: natural forest regeneration and teak plantation.

"We found that if all existing grasslands were allowed to regenerate as natural forest, there would be a reduction in dry-season flows across the watershed of 8.4 percent, compared to 11.1 percent if reforestation took the form of teak plantations."

In both cases, these conditions potentially pose a problem for the Panama Canal Authority. Even with water-saving advances in the new locks, the canal is expected to need 14 percent more water when the expansion takes full effect, and other options for securing dry-season flows are not cost-free.

However, the Panama Canal Authority is not the only beneficiary of the watershed, and water is not the only ecosystem service supplied. "Both natural forest and teak plantations offer benefits in the form of carbon sequestration and timber products, among other things, and these should be weighed against any water losses," said Perrings.

According to their study, water losses from "natural" forest regeneration would be compensated by the value of carbon sequestration in 59.6 percent of the converted area at current carbon prices. On the other hand, reforestation of existing grassland with teak (under sustainable forest management) would generate gains sufficient to offset the hydrological losses in all converted areas, regardless of the value of carbon.

The authors note that their study does not consider the value of land cover as habitat for wild fauna and flora. However, they say their results could help canal planners prioritize reforestation efforts. Knowing what to plant and where can reduce the negative impact of forests on dry season water flows, while providing other important ecosystem services.

.


Related Links
Arizona State University
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
Drought makes Borneo's trees flower at the same time
Zurich, Switzerland (SPX) May 27, 2013
Tropical plants flower at supra-annual irregular intervals. In addition, mass flowering is typical for the tropical forests in Borneo and elsewhere, where hundreds of different plant timber species from the Dipterocarpaceae family flower synchronously. This phenomenon is all the more puzzling because both temperature and day length are relatively constant all year round due to geographical ... read more


WOOD PILE
Japan nuclear lab accident affected 30: agency

Kerry unveils $4 bn Palestinian investment plan

Death toll in China blast rises to 33: Xinhua

Italian town struggles to rebuild a year after quakes

WOOD PILE
Ecuador's only satellite may have been damaged in space collision

New analysis yields improvements in 3D imaging

Professor who once had to work at Subway makes math breakthrough

Iron-platinum alloys could be new-generation hard drives

WOOD PILE
Source of life running out: water scientists

S. Korea commission to probe $20 bln river project

Spain and France agree on fishing quota swap

LLNL scientist finds topography of Eastern Seaboard muddles ancient sea level changes

WOOD PILE
Slovenian flyer completes eco-friendly Arctic voyage

Russia plans urgent evacuation of Arctic post as ice melts

Sea level influenced tropical climate during the last ice age

World's biggest ice sheets likely more stable than previously believed

WOOD PILE
New research shows that potatoes provide one of the best nutritional values per penny

Researchers identify new target to boost plant resistance to insects and pathogens

The world's favorite fruit only better-tasting and longer-lasting

China to ban non-French 'champagne' copycats

WOOD PILE
Massive Far East quake felt in Moscow, no casualties

Saudi researchers say drones could warn of desert flash floods

China steps up flood preparations after storms

Evacuation orders in Chile, Argentina over volcano

WOOD PILE
Climate change drowning the 'Venice of Africa'

Outside View: Somalia's Jubaland

Nigeria says women, children held by Boko Haram freed

Africa celebrates progress and 50 years of 'unity'

WOOD PILE
Monkey teeth help reveal Neanderthal weaning

China newborn rescued from toilet pipe: report

Origins of human culture linked to rapid climate change

Climate change boosted human development: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement