|
. | . |
|
by Staff Writers Riverside CA (SPX) Jan 29, 2015
Each year millions of deaths result from diseases transmitted by insects. Insects are also responsible for major economic losses, worth billions of dollars annually, by damaging crops and stored agricultural products. Many currently available insecticides present environmental and health risks. Further, insects develop resistance to existing insecticides, complicating pest-control strategies. The need to develop novel effective insecticides is therefore urgent. Enter "insect-specific growth regulators," which, as their name suggests, are compounds that regulate the growth of insects. They represent attractive pest-control agents because they pose no health risk to humans and are also environmentally safe. One hormone in insects, called juvenile hormone, is a particularly attractive target for insect growth regulators because this hormone exists only in insects. Juvenile hormone plays key roles in insect development, reproduction and other physiological functions. An international team of scientists, including an entomologist at the University of California, Riverside, has investigated in detail how juvenile hormone acts and has devised a method to prevent its working. The researchers, led in the United States by Alexander Raikhel, a distinguished professor of entomology at UC Riverside, discovered potent compounds in plants that counteract the action of juvenile hormone. These compounds, called juvenile hormone antagonists (JHANs), make up plants' innate resistance mechanism against insect herbivores. In collaboration with Korean scientists, Raikhel's lab screened 1,651 plant species and chose active JHANs from these plants. They then identified five JHANs from two plants that are effective in causing mortality of yellow fever mosquito larvae, specifically by retarding the development of ovaries. "Our experiments showed that these five JHANs are effective against yellow fever mosquitoes," Raikhel said. "Our Korean collaborators, led by Sang Woon Shin at Seoul National University, are testing the effect of these five molecules on other agricultural pests. These newly discovered natural molecules could lead to the development of a new class of safe and effective pesticides to control mosquitoes and, we expect, other agricultural pests."
Related Links University of California - Riverside Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |