. Earth Science News .
Rutgers Scientists Preserve And Protect Foods Naturally

As a bonus, some of the antimicrobials carry some of the flavors and aromas of the sources from which they were derived.
by Staff Writers
New Brunswick NJ (SPX) Aug 22, 2007
Two items high on the list of public concerns are the need for greater food safety and a growing demand for natural or organic food products. Understanding this, chemists and food scientists at Rutgers, The State University of New Jersey, joined forces to develop natural approaches to the prevention of food contamination and spoilage.

The researchers employed natural antimicrobial agents derived from sources such as cloves, oregano, thyme and paprika to create novel biodegradable polymers or plastics to potentially block the formation of bacterial biofilms on food surfaces and packaging.

Typically, a variety of bacteria will congregate on a surface to form a bacterial community that exists as a slime-like matrix referred to as a biofilm. This kind of bacterial community is often described as being polymicrobial; it harbors multiple versions of infectious, disease-causing bacteria, such as Salmonella and E. coli.

"We mated natural substances with controlled-release, biodegradable polymers that could inhibit or prevent the formation of bacterial biofilms," explained Ashley Carbone, a graduate student at Rutgers who constructed the polymer compounds that were tested.

This approach offers a number of advantages. The diversity of polymicrobial biofilms makes them difficult to defeat, with each type of microbe presenting a unique challenge to health and hygiene, explained Kathryn Uhrich, professor of chemistry and chemical biology and Carbone's adviser.

"The natural substances we chose have general antimicrobial activities against many different kinds of microorganisms," Uhrich said. "Therefore, the polymers into which we incorporated these natural substances have the potential to affect a much broader spectrum of microorganisms than organism-specific drugs," Uhrich said.

Another advantage comes out of the Rutgers researchers' decision to focus on the biofilms, rather than attempting to attack the individual bacteria. This avoids the potential of increasing the antimicrobial resistance of specific bacteria, an emerging problem in medical circles brought on by the overprescription of antibiotics.

An additional positive feature stems from the use of polymer "backbones" to which the natural agents were incorporated. These polymers are biodegradable due to their specific chemical composition and the nature of the bonds that hold them together, Uhrich explained.

"As they degrade in the presence of water and/or enzymes, they slowly release their active antimicrobials," Carbone said. "A slow and controlled release of the food-based antimicrobial would offer great advantages in the food industry, providing protection over an extended time and extending the shelf-life of the food product."

The retail marketing sector may benefit from the Rutgers innovation. With the growing consumer interest in natural foods, shoppers may be more attracted to products containing natural antimicrobial ingredients rather than the synthetic chemical additives currently in use to protect against contamination and spoilage.

"If consumers buy products containing our natural bioactives, they will benefit from all the positive factors that come along with our new strategy for food safety," said Michael Chikindas, associate professor of food science at Rutgers and a co-investigator on the project. "They will be eating foods that are safer for longer periods of time; they will not be expanding antibiotic resistance; and they will not be adding to their bodies' synthetic chemical load."

As a bonus, some of the antimicrobials carry some of the flavors and aromas of the sources from which they were derived. "The food people eat might even smell and taste better," Chikindas said.

Uhrich remarked that when entering her laboratory recently, she was struck by the fragrant smell of curry. "When I asked where lunch was being served, Ashley explained there was no food in the lab and I only smelled the new polymers she was making," Uhrich said.

Community
Email This Article
Comment On This Article

Related Links
Rutgers, the State University of New Jersey
Farming Today - Suppliers and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


First All-African GM Crop Is Resistant To Maize Streak Virus
Cape Town, South Africa (SPX) Aug 20, 2007
The first all-African genetically modified crop plant with resistance to the severe maize streak virus (MSV), which seriously reduces the continent's maize yield, has been developed by scientists from the University of Cape Town and PANNAR PTY Ltd, a South African seed company.







  • Geologist Plans Volcano Safety For Ecuadorians
  • EU ponders paying Britain up to 145 million euros in flood damage aid
  • Asia-Pacific bears brunt of disasters in recent years
  • Jamaica mops up after a beating from hurricane Dean

  • Scientists seek new ways to feed the world amid global warming
  • Climate Change Isolates Rocky Mountain Butterflies
  • Humans not proven to cause global warming: Australian MPs
  • Climate Change And Permafrost Thaw Alter Greenhouse Gas Emissions In Northern Wetlands

  • China Develops Beidou Satellite Monitoring System
  • DigitalGlobe Announces Launch Date For WorldView-1
  • Radar reveals vast medieval Cambodian city: study
  • Satellite Tracking Will Help Answer Questions About Penguin Travels

  • Pellets Of Power Designed To Deliver Hydrogen To Future Cars
  • IEA concerned about hurricane's impact on Mexico oil production
  • Uganda's Museveni launches 770 million-dollar power project
  • Kazakhstan may halt ENI-run oil field over environment

  • China probably 'covered up' pig disease outbreaks
  • Nanoparticle Could Help Detect Many Diseases Early
  • Online gamers rehearse real-world epidemics
  • Features Of Replication Suggest Viruses Have Common Themes And Vulnerabilities

  • T Rex Quicker Than Becks
  • Male Elephants Get Photo IDs From Scientists
  • What Oh What Are Those Actinides Doing
  • What A 250-Million-Year-Old Extinction Event Can Tell Us About The Earth Today

  • China behind in pollution drive
  • Water, Air And Soil Pollution Causes 40 Percent Of Deaths Worldwide
  • China Economic Boom Polluting Seas And Skies Of East Asia
  • Pollution Amplifies Greenhouse Gas Warming Trends To Jeopardize Asian Water Supplies

  • Area Responsible For Self-Control Found In The Human Brain
  • Milestone In The Regeneration Of Brain Cells: Supportive Cells Generate New Nerve Cells
  • Gene Regulation, Not Just Genes, Is What Sets Humans Apart
  • 3-D Brain Centers Pinpointed

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement