|
. | . |
|
by Staff Writers Halifax, Canada (SPX) Apr 08, 2014
The scientific world is one step closer to understanding how nature uses carbon-capture to tame poisons, thanks to a recent discovery of cyanoformate by researchers at Saint Mary's University (Halifax, Canada) and the University of Jyvaskyla (Finland). This simple ion - which is formed when cyanide bonds to carbon dioxide - is a by-product of the fruit-ripening process that has evaded detection for decades. Chemists have long understood the roles presence of cyanide (CN-) and carbon dioxide (CO2) in fruit ripening, but have always observed them independently. This is the first time scientists have isolated the elusive cyanoformate anion (NCCO2-) and characterized its structure using crystallography and computational chemistry. The results of the two-year study led by Dr. Jason Clyburne, Saint Mary's University, and Dr. Heikki M. Tuononen, University of Jyvaskyla, were released in Science, the world's preeminent scientific journal. Their findings demonstrate the profound effect the surrounding medium has on the stability of cyanoformate. This situational stability allows carbon dioxide to deactivate cyanide's toxic capabilities at the enzyme's active site where chemical reactions take place. Subsequently, the cyanoformate migrates to the cytoplasm of the cell where it breaks down, releasing the toxic cyanide at a location where it can be dealt with. While this explains how the formation of cyanide does not halt the fruit ripening process, the implications extend far beyond plants and a single enzyme. Recognizing the factors governing the stability of cyanoformate furthers our understanding of carbon-capture, a process used to trap and store carbon dioxide in the environment. "Here we have a perfect example of nature taming a poison, and what better way to learn the chemistry of carbon-capture than from nature itself?" says Dr. Jason Clyburne, Canada Research Chair in Environmental Science and Materials, and professor of Environmental Science and Chemistry at Saint Mary's University. "One of the biggest challenges in carbon capture is finding a material that not only captures CO2, but easily releases it," says Luke Murphy, a Masters of Science candidate at Saint Mary's who prepared the crystalline material for the study. "Cyanoformate does both and can be used as a model to develop a greener alternative." This discovery highlights the importance of applied chemistry to other areas of science and indicates there is still more to be learned about the chemistry of carbon dioxide in cells. "The fact that cyanoformate was undetected for so long begs the question: What other simple chemistry have we missed?" asks Dr. Heikki M. Tuononen, Academy of Finland research fellow, and senior lecturer at University of Jyvaskyla, Finland. Dr. Jason Clyburne is widely recognized as a leader in the study of green chemistry, particularly in the field of ionic liquids. In addition to holding a Canada Research Chair in Environmental Science and Materials at Saint Mary's University (Nova Scotia, Canada), Dr. Clyburne is an adjunct professor at Simon Fraser University and Section Co-Chair of the Inorganic Chemistry Evaluation Group with the Natural Sciences and Engineering Council of Canada.
Related Links Saint Mary's University Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |