. Earth Science News .
Scientists Close In On Missing Carbon Sink

For years, one of the biggest mysteries in climate science has been the question of what ultimately happens to the carbon emitted by motor vehicles, factories, deforestation, and other sources. Of the approximately 8 billion tons of carbon emitted each year, about 40 percent accumulates in the atmosphere and about 30 percent is absorbed by the oceans. Scientists believe that terrestrial ecosystems, especially trees, take up the remainder.
by Staff Writers
Boulder CO (SPX) Jun 22, 2007
Forests in the United States and other northern mid- and upper-latitude regions are playing a smaller role in offsetting global warming than previously thought, according to a study appearing in Science this week. The study, which sheds light on the so-called missing carbon sink, concludes that intact tropical forests are removing an unexpectedly high proportion of carbon dioxide from the atmosphere, partially offsetting carbon entering the air through industrial emissions and deforestation.

The Science article, "Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2," was written by an international team of scientists led by Britton Stephens of the National Center for Atmospheric Research (NCAR).

To study the global carbon cycle, Stephens and his colleagues analyzed air samples that had been collected by aircraft across the globe for decades but never before synthesized. The team found that some 40 percent of the carbon dioxide assumed to be absorbed by northern forests is instead taken up in the tropics.

"Our study will provide researchers with a much better understanding of how trees and other plants respond to industrial emissions of carbon dioxide, which is a critical problem in global warming," Stephens says. "This will help us better predict climate change and identify possible strategies for mitigating it."

The missing carbon

For years, one of the biggest mysteries in climate science has been the question of what ultimately happens to the carbon emitted by motor vehicles, factories, deforestation, and other sources. Of the approximately 8 billion tons of carbon emitted each year, about 40 percent accumulates in the atmosphere and about 30 percent is absorbed by the oceans. Scientists believe that terrestrial ecosystems, especially trees, take up the remainder.

To find this terrestrial carbon sink, scientists have turned to computer models that combine worldwide wind patterns with measurements of carbon dioxide taken just above ground level. The models indicate that northern forests absorb about 2.4 billion tons per year. However, ground-based studies have tracked only about half that amount, leaving scientists to speculate about a "missing carbon sink" in the north.

Stephens and his collaborators set out to test how well the models captured carbon sinks, focusing in particular on estimates produced by a recent international study into global carbon exchange known as TransCom. They turned to flasks of air collected by research aircraft over various points of the globe for the past 27 years. The air samples had been analyzed by several labs around the world, which used them to investigate various aspects of the carbon cycle, but this was the first time that a team of scientists analyzed them to obtain a picture of sources and sinks of carbon on a global level.

The research team compared the air samples to estimates of airborne carbon dioxide concentrations generated by the computer models. The scientists found that most of the models significantly underestimated the airborne concentrations of carbon dioxide in northern latitudes, especially in the summer, when plants take in more carbon. The aircraft samples show that northern forests absorb only 1.5 billion tons of carbon a year, which is almost 1 billion tons less than the estimate produced by the computer models.

The scientists also found that intact tropical ecosystems are a more important carbon sink than previously thought. The models had generally indicated that tropical ecosystems were a net source of 1.8 billion tons of carbon, largely because trees and other plants release carbon into the atmosphere as a result of widespread logging, burning, and other forms of clearing land. The new research indicates, instead, that tropical ecosystems are the net source of only about 100 million tons of carbon, even though tropical deforestation is occurring rapidly.

"Our results indicate that intact tropical forests are taking up a large amount of carbon," Stephens explains. "They are helping to offset industrial carbon emissions and the atmospheric impacts of clearing land more than we realized."

Capturing vertical movements

Most of the computer models produced incorrect estimates because, in relying on ground-level measurements, they failed to accurately simulate the movement of carbon dioxide vertically in the atmosphere. The models tended to move too much carbon dioxide toward ground level in the summer, when growing trees and other plants take in the gas, and not enough carbon dioxide up in the winter. As a result, scientists believed that there was relatively less carbon in the air above mid-latitude and upper-latitude forests, presumably because trees and other plants were absorbing high amounts.

Conversely, scientists had assumed a large amount of carbon was coming out of the tropics and moving through the atmosphere to be absorbed in other regions. But the new analysis of aircraft samples shows that this is not the case.

"With this new information from aircraft samples we see that the models were overestimating the amount of uptake in the north and underestimating uptake in the tropics," says Kevin Gurney of Purdue University, a co-author of the paper and coordinator of the TransCom study. "To figure out exactly what is happening, we need improved models and more atmospheric observations."

Title: "Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2" Authors: Britton B. Stephens, Kevin R. Gurney, Pieter P. Tans, Colm Sweeney, Wouter Peters, Lori Bruhwiler, Philippe Ciais, Michel Ramonet, Philippe Bousquet, Takakiyo Nakazawa, Shuji Aoki, Toshinobu Machida, Gen Inoue, Nikolay Vinnichenko, Jon Lloyd, Armin Jordan, Martin Heimann, Olga Shibistova, Ray L. Langenfelds, L. Paul Steele, Roger J. Francey, A. Scott Denning. Publication: Science, June 22, 2007

Email This Article

Related Links
University Corporation for Atmospheric Research
Forestry News - Global and Local News, Science and Application



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Indonesia Aims To Halve Haze-Causing Fires
Jakarta (AFP) June 20, 2007
Indonesia aims to halve the number of forest fires this year in an effort to tackle the choking haze which affects the region annually, a minister said Wednesday after Southeast Asian talks on the issue. Environment ministers from Brunei, Indonesia and Singapore and deputy ministers from Malaysia and Thailand held talks in Jambi on Sumatra island to track progress on mapping out plans to reduce the haze, which triggers health alerts and damages tourism.







  • New Orleans Still At Risk Of Serious Flooding
  • Water Spray Latest Headache For Indonesian Mudflow Engineers
  • Building House Forms And Shapes For Better Hurricane Endurance
  • NOAA Satellites Ready For Active Hurricane Season

  • Dutch Data Shows China Surpassed The US In 2006 Carbon-Dioxide Emissions
  • Climate Models Consistent With Ocean Warming Observations
  • World Desertification Day Puts Spotlight On Neglected Crisis
  • UN Secretary General Points To Climate Change As Partly Behind Darfur Disaster

  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008
  • NASA Satellites Watch as China Constructs Giant Dam
  • Boeing Launches Italian Earth Observation Satellite

  • China Hits Back On Climate Change After Being Tagged Top Culprit
  • OPEC Wants Reasonable Price For Its Oil
  • Renewable Sources Contributed Nearly 10 Percent To US Electric Generation In 2006
  • US Official Emphasizes Enforcement Role in Energy Markets

  • Ancient Retrovirus Sheds Light On Modern Pandemic
  • Bird Flu Fears Reignited
  • Bono And Geldof blast G8 AIDS Pledge Farce
  • US Firm To Trial Bird Flu Vaccine In Indonesia And Hong Kong

  • Explorers To Use Robotic Vehicles To Hunt for Life And Vents On Arctic Seafloor
  • Ancient DNA Traces The Woolly Mammoth Disappearance
  • Book Makes Case For Using Evolution In Everyday Life
  • Study Shows Lizard Moms Dress Their Children For Success

  • Indonesian Activists Report Snoozing Newmont Judges
  • EPA Wants Tighter US Smog Controls
  • Human Noses To Sniff Out Pollutants Across China
  • Polluted Chinese River Hospitalises 61

  • UN Warns Aging Populations Will Require New Approaches
  • Etruscans Were Immigrants From Anatolia In Ancient Turkey
  • The High Cost Of The Beijing Olympics
  • New Findings Challenge Established Views About Human Genome

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement