. | . |
Scientists reveal how animals find their way 'in the dark' by Staff Writers Washington DC (SPX) Mar 25, 2016
Scientists have revealed the brain activity in animals that helps them find food and other vital resources in unfamiliar environments where there are no cues, such as lights and sounds, to guide them. Animals that are placed in such environments display spontaneous, seemingly random behaviors when foraging. These behaviors have been observed in many organisms, although the brain activity behind them has remained elusive due to difficulties in knowing where to look for neural signals in large vertebrate brains. Now, in a study to be published in the journal eLife, researchers have used whole-brain imaging in larval zebrafish to discover how their brain activity translates into spontaneous behaviors. They found that the animals' behavior in plain surroundings is not random at all, but is characterized by alternating left and right turn "states" in the brain, where the animals are more likely to perform repeated left and right turning maneuvers, respectively. "We noted that a turn made by the zebrafish was likely to follow in the same direction as the preceding turn, creating alternating "chains" of turns biased to one side and generating conspicuous, slaloming swim trajectories," says first author Timothy Dunn, a postdoctoral researcher at Harvard University. "Freely swimming fish spontaneously chained together turns in the same direction for approximately five to 10 seconds on average, and sometimes for much longer periods. This significantly deviates from a random walk, where movements follow no discernible pattern or trend." By analyzing the relationship between spontaneous brain activity and spontaneous behavior in the larval zebrafish, the researchers generated whole-brain activity maps of neuronal structures that correlated with the patterns in the animals' movements. They discovered a nucleus in the zebrafish hindbrain, which participates in a simple but potentially vital behavioral algorithm that may optimize foraging when there is little information about the environment available to the animal. As such behavioral strategies must exist in other animals that explore environments much larger than themselves, the team expects that the neural systems observed in the zebrafish must also exist in other organisms. "Overall, our whole-brain analysis, neural activity experiments, and anatomical characterization of zebrafish revealed a circuit contributing to the patterning of a spontaneous, self-generated behavior," explains co-first author Yu Mu, a postdoctoral researcher at Janelia Research Campus. "As our study makes very specific predictions about this circuit, future experiments will be required to validate its critical components. It will also be interesting to see if different environmental contexts and the motivational state of zebrafish influence their spontaneous swim patterns." Research paper: 'Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion'
Related Links eLife Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |