. Earth Science News .
FLORA AND FAUNA
Scientists simulate tiny bacteria-powered 'windfarm'
by Staff Writers
Oxford CA (SPX) Jul 12, 2016


illustration only

A team of scientists from Oxford University has shown how the natural movement of bacteria could be harnessed to assemble and power microscopic 'windfarms' - or other man-made micromachines such as smartphone components.

The study, published in the journal Science Advances, uses computer simulations to demonstrate that the chaotic swarming effect of dense active matter such as bacteria can be organised to turn cylindrical rotors and provide a steady power source.

Researchers say these biologically driven power plants could someday be the microscopic engines for tiny, man-made devices that are self-assembled and self-powered - everything from optical switches to smartphone microphones.

Co-author Dr Tyler Shendruk, from Oxford University's Department of Physics, said: 'Many of society's energy challenges are on the gigawatt scale, but some are downright microscopic. One potential way to generate tiny amounts of power for micromachines might be to harvest it directly from biological systems such as bacteria suspensions.'

Dense bacterial suspensions are the quintessential example of active fluids that flow spontaneously. While swimming bacteria are capable of swarming and driving disorganised living flows, they are normally too disordered to extract any useful power from.

But when the Oxford team immersed a lattice of 64 symmetric microrotors into this active fluid, the scientists found that the bacteria spontaneously organised itself in such a way that neighbouring rotors began to spin in opposite directions - a simple structural organisation reminiscent of a windfarm.

Dr Shendruk added: 'The amazing thing is that we didn't have to pre-design microscopic gear-shaped turbines. The rotors just self-assembled into a sort of bacterial windfarm.

'When we did the simulation with a single rotor in the bacterial turbulence, it just got kicked around randomly. But when we put an array of rotors in the living fluid, they suddenly formed a regular pattern, with neighbouring rotors spinning in opposite directions.'

Co-author Dr Amin Doostmohammadi, from Oxford University's Department of Physics, said: 'The ability to get even a tiny amount of mechanical work from these biological systems is valuable because they do not need an input power and use internal biochemical processes to move around.

'At micro scales, our simulations show that the flow generated by biological assemblies is capable of reorganising itself in such a way as to generate a persistent mechanical power for rotating an array of microrotors.'

Senior author Professor Julia Yeomans, from Oxford University's Department of Physics, added: 'Nature is brilliant at creating tiny engines, and there is enormous potential if we can understand how to exploit similar designs.'


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oxford
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FLORA AND FAUNA
Frogs that can take the heat expected to fare better in a changing world
Davis CA (SPX) Jul 11, 2016
Amphibians that tolerate higher temperatures are likely to fare better in a world affected by climate change, disease and habitat loss, according to two recent studies from the University of California, Davis. Frogs are disappearing globally, and the studies examine why some survive while others perish. The studies reveal that thermal tolerance - the ability to withstand higher temperatures - ma ... read more


FLORA AND FAUNA
A new way to detect hidden damage in bridges, roads

Friend or foe? Texas open-carry gun law under scrutiny

Nepal selling rice donated for quake victims

Pacific Ocean radiation back near normal after Fukushima: study

FLORA AND FAUNA
Researchers improve catalyst efficiency for clean industries

A little impurity makes nanolasers shine

Researchers improve performance of cathode material by controlling oxygen activity

A sharper focus for plasmonic lasers

FLORA AND FAUNA
Experts listen in on noisy Falmouth seas

Shark town: Australian surf spot reeling from attacks

Florida algae bloom afflicts economy, sea life

New technology could improve use of small-scale hydropower in developing nations

FLORA AND FAUNA
Expanding Antarctic sea ice linked to natural variability

King penguins keep an ear out for predators

Vegetation in Russian Arctic has memory

Super-slow circulation allowed world's oceans to store huge amounts of carbon during last ice age

FLORA AND FAUNA
A culinary expedition with Peru's intrepid top chef

EU limits glyphosate use during 18-month extension

ChemChina extends $43 bn offer for agri-giant Syngenta

Feeding the world by rewiring plant mouths

FLORA AND FAUNA
California ill-prepared for the Big One, experts say

Strong 6.3 magnitude earthquake shakes Ecuador: USGS

Tropical storm kills 10 in China, 11 missing

Understanding tsunamis with EM fields

FLORA AND FAUNA
Rwanda hikes import duties on secondhand clothes

Nigeria's ex-air force chief charged with money laundering

Why are UN forces returning control of security to Liberia?

Seven Niger gendarmes killed in refugee camp attack

FLORA AND FAUNA
Archaeology suggests no direct link between climate change and early human innovation

Monkeys know what they don't know

The history of human genetic ancestry in Madagascar

Ancient Brazilians occupied the same houses for centuries









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.