|
. | . |
|
by Staff Writers Helsinki, Finland (SPX) Nov 26, 2013
That smaller islands will typically sustain fewer species than large ones is a widespread pattern in nature. Now a team of researchers shows that smaller area will mean not only fewer species, but also shorter food chains. This implies that plant and animal communities on small islands may work differently from those on large ones. Working across a set of 20 islands off the Finnish coast, a group of Finnish scientists found that a disproportionate number of small islands were lacking the highest levels of the food chain. The results are freshly online in the journal Ecography. "Ecologists have known for decades that less area means fewer species", explains Tomas Roslin, who spearheaded the current analyses. "What we show is that the decrease in species richness with decreasing area gets steeper when you climb up the food chain. "That means that when you move towards smaller island size, you run out of top predators before you run out of intermediate predators, and that you lose the last plant-eaters before you lose the last plant." The study comes with broad implications for a world shattered by human activities. "While we worked on a set of real islands, you can probably think of habitat fragments as 'islands' in a broader sense", says Tomas. "What our results then mean is that if we keep splitting natural habitats into smaller and smaller pieces, we may not only lose a lot of species from the resultant fragments, but also change the structure and functioning of local food webs."
Knowing your species the key to insights Among predators, the researchers targeted a specific group, i.e. parasitic wasps. "To test ideas about food chain length, you really cannot deal with raw counts of species - instead, you need to know which species form actual feeding chains" says Gergely Varkonyi, an international expert on wasps involved in the project. "Among the wasps encountered on these islands, we were able to pick out the species truly dependent on the lepidopteran herbivores. As we see it, knowing not just what the species are but what they do in their lives is the key to sensible ecology", emphasizes Gergely.
Hundreds of species examined "Where other people have looked at effects of island size on restricted numbers of species or restricted levels in food chains, we did the full thing across four levels", he specifies. "Overall, we dealt with 200 species of plants, 415 species of lepidopteran herbivores, 42 species of parasitic wasps attacking herbivores and 7 species of wasps attacking parasitic wasps."
Deliberately keeping things simple
Maintaining interactions may be trickier than maintaining species Original reference: Roslin, T., Varkonyi, G., Koponen, M., Vikberg, V., and Nieminen, M. 2013. Species-area relationships across four trophic levels - decreasing island size truncates food chains. Ecography doi: 10.1111/j.1600-0587.2013.00218.x
Related Links University of Helsinki Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |