. | . |
Snap, digest, respire by Staff Writers Breisgau, Germany (SPX) Jan 24, 2017
The Venus flytrap captures insects for more than just nutritional purposes: A research team lead by Prof. Dr. Heinz Rennenberg and Lukas Fasbender from the Institute of Forest Sciences at the University of Freiburg has proven the carnivorous plant extracts also energy from its prey. The scientists recently presented their findings in the scientific journal New Phytologist. The Venus flytrap can be found in the United States in areas with nutrient-depleted soil. The plant compensates for its environmental limitations by trapping insects in their outer green stomach: specialized leaf traps, which decompose the insects with the help of digestive juices. By doing so, they are able to extract nutrients such as phosphorous and nitrogen lacking in the soil, but which are present in the insects themselves. Up until now, researchers assumed that energy production played no part in the process because they thought the oxidation from photosynthesis was sufficient for the plant's energy needs. With the help of light energy during photosynthesis, oxygen and glucose are produced from carbon dioxide and water. The sugar can be transformed into energy through respiration, whereby carbon dioxide is emitted. Through their experiment, researchers have discovered that the Venus flytrap indeed extracts energy from its prey. In order to prove their theory, the researchers placed artificial nutrients - a solution laced with the amino acid glutamine - into the leaf traps of the plant. They used stable, non-radioactive 13C-isotopes, differing from other carbon atoms due to their higher mass, to label the glutamine carbon. With the help of an infrared laser they were able to prove that these 13C-isotopes from the prey occured in the carbon dioxide that the plant emitted, starting about one to two hours after feeding. The scientists now assume that the process of ingestion and energy production in the Venus flytrap is more complex than thought: The carnivorous plant thus uses the energy it receives during photosynthesis to begin the digestive process and to access nutrients. In order to maintain this process, it produces additional energy by oxidizing amino acids that it extracts from its prey, thereby gaining access to yet another energy source.
Related Links University of Freiburg Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |