|
. | . |
|
by Staff Writers Boston MA (SPX) Aug 29, 2014
If ever there were a silver lining to global warming, it might be the prospect of milder winters. After all, it stands to reason that a warmer climate would generate less snow. But a new MIT study suggests that you shouldn't put your shovels away just yet. While most areas in the Northern Hemisphere will likely experience less snowfall throughout a season, the study concludes that extreme snow events will still occur, even in a future with significant warming. That means that, for example, places like Boston may see less snowy winters overall, punctuated in some years by blizzards that drop a foot or two of snow. "Many studies have looked at average snowfall over a season in climate models, but there's less known about these very heavy snowfalls," says study author Paul O'Gorman, an associate professor in MIT's Department of Earth, Atmospheric and Planetary Sciences. "In some regions, it is possible for average snowfall to decrease, but the snowfall extremes actually intensify." O'Gorman studied daily snowfall across the Northern Hemisphere using 20 different climate models, each of which projected climate change over a 100-year period, given certain levels of greenhouse gas emissions. He looked at both average seasonal snowfall and extreme snowfall events under current climate conditions, and also following projected future warming. Not surprisingly, O'Gorman found that under relatively high warming scenarios, low-elevation regions with winter temperatures initially just below freezing experienced about a 65 percent reduction in average winter snowfall. However, in these same regions, the heaviest snowstorms became only 8 percent less intense. In some higher-latitude regions, extreme snow events became more intense, depositing 10 percent more snow, even under scenarios of relatively high global warming. "You might expect with a warmer climate there should be major changes in snowfall in general," O'Gorman says. "But that seems to be true to a greater extent for average snowfall than for the intensities of the heaviest snowfall events." O'Gorman has published the results of his study this week in the journal Nature.
Daily snowfall Daily snowfall in a range of climate model simulations has recently been made available through the Coupled Model Intercomparison Project - a growing archive of climate modeling output, including snowfall, that modeling centers and researchers around the world contribute to and analyze. O'Gorman analyzed daily snow amounts from simulations with 20 different climate models in the archive. Each model simulated a "control climate," for the years 1981 to 2000, as well as a "warm climate," for the years 2081 to 2100, assuming relatively high emissions of greenhouse gases. Over this 100-year period, O'Gorman found that average snowfall decreased substantially in many Northern Hemisphere regions in warm-climate scenarios compared with the milder control climates, but that snowfall amounts in the largest snowstorms did not decrease to the same extent. He warned, however, that changes in snowfall extremes can be larger in regions with little snowfall to begin with, such as the southwestern United States. He also notes that while this study focuses on percentage changes in the amount of snowfall in extreme snowfall events, there can be larger changes in the frequency of such events. From the simulations, O'Gorman found that it takes greater climate warming to reduce the intensity of extreme snowstorms than to reduce average seasonal snowfall. Specifically, a region would experience less seasonal snow if average winter temperatures were initially above minus 14 degrees Celsius (7 degrees Fahrenheit). But the heaviest snowstorms would become less intense only above minus 9 C (16 F).
A sweet spot for extreme snowfall "People may know the expression, 'It's too cold to snow' - if it's very cold, there is too little water vapor in the air to support a very heavy snowfall, and if it's too warm, most of the precipitation will fall as rain," O'Gorman says. "Snowfall extremes still occur in the same narrow temperature range with climate change, and so they respond differently to climate change compared to rainfall extremes or average snowfall."
Related Links Massachusetts Institute of Technology Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |